Journal Home > Volume 12 , Issue 8

Amorphous indium–gallium–zinc oxide (a-IGZO) materials have been widely explored for various thin-film transistor (TFT) applications; however, their device performance is still restricted by the intrinsic material issues especially due to their non-crystalline nature. In this study, highly crystalline superlattice-structured IGZO nanowires (NWs) with different Ga concentration are successfully fabricated by enhanced ambient-pressure chemical vapor deposition (CVD). The unique superlattice structure together with the optimal Ga concentration (i.e., 31 at.%) are found to effectively modulate the carrier concentration as well as efficiently suppress the oxygen vacancy formation for the superior NW device performance. In specific, the In1.8Ga1.8Zn2.4O7 NW field-effect transistor exhibit impressive device characteristics with the average electron mobility of ~ 110 cm2·V−1·s−1 and on/off current ratio of ~ 106. Importantly, these NWs can also be integrated into NW parallel arrays for the construction of high-performance TFT devices, in which their performance is comparable to many state-of-the-art IGZO TFTs. All these results can evidently indicate the promising potential of these crystalline superlattice-structured IGZO NWs for the practical utilization in next-generation metal-oxide TFT device technologies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Crystalline InGaZnO quaternary nanowires with superlattice structure for high-performance thin-film transistors

Show Author's information Fangzhou Li1SenPo Yip1,2,3Ruoting Dong1,2Ziyao Zhou1,2Changyong Lan1Xiaoguang Liang1Dapan Li1You Meng1Xiaolin Kang1Johnny C. Ho1,2,3,4( )
Department of Materials Science and Engineering,City University of Hong Kong,Hong Kong,999077,China;
Shenzhen Research Institute,City University of Hong Kong,Shenzhen,518057,China;
State Key Laboratory of Terahertz and Millimeter Waves,City University of Hong Kong,Hong Kong,999077,China;
Centre for Functional Photonics,City University of Hong Kong,Hong Kong,999077,China;

Abstract

Amorphous indium–gallium–zinc oxide (a-IGZO) materials have been widely explored for various thin-film transistor (TFT) applications; however, their device performance is still restricted by the intrinsic material issues especially due to their non-crystalline nature. In this study, highly crystalline superlattice-structured IGZO nanowires (NWs) with different Ga concentration are successfully fabricated by enhanced ambient-pressure chemical vapor deposition (CVD). The unique superlattice structure together with the optimal Ga concentration (i.e., 31 at.%) are found to effectively modulate the carrier concentration as well as efficiently suppress the oxygen vacancy formation for the superior NW device performance. In specific, the In1.8Ga1.8Zn2.4O7 NW field-effect transistor exhibit impressive device characteristics with the average electron mobility of ~ 110 cm2·V−1·s−1 and on/off current ratio of ~ 106. Importantly, these NWs can also be integrated into NW parallel arrays for the construction of high-performance TFT devices, in which their performance is comparable to many state-of-the-art IGZO TFTs. All these results can evidently indicate the promising potential of these crystalline superlattice-structured IGZO NWs for the practical utilization in next-generation metal-oxide TFT device technologies.

Keywords: nanowires, InGaZnO, thin-film transistors, superlattice

References(56)

1

Nomura, K.; Takagi, A.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 2006, 45, 4303.

2

Liu, X.; Hu, H. H.; Ning, C.; Shang, G. L.; Yang, W.; Wang, K.; Lu, X. H.; Lee, W.; Wang, G.; Xue, J. S. et al. Investigation into sand mura effects of a-IGZO TFT LCDs. Microelectron. Reliab. 2016, 63, 148–151.

3

Oh, H.; Cho, K.; Park, S.; Kim, S. Electrical characteristics of bendable a-IGZO thin-film transistors with split channels and top-gate structure. Microelectron. Eng. 2016, 159, 179–183.

4

Wu, G. M.; Sahoo, A. K.; Lin, J. Y. Effects of e-beam deposited gate dielectric layers with atmospheric pressure plasma treatment for IGZO thin-film transistors. Surf. Coat. Technol. 2016, 306, 151–158.

5

Lin, J. C.; Huang, B. R.; Yang, Y. K. IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors. Sens. Actuators, B: Chem. 2013, 184, 27–32.

6

Seo, D. K.; Shin, S.; Cho, H. H.; Kong, B. H.; Whang, D. M.; Cho, H. K. Drastic improvement of oxide thermoelectric performance using thermal and plasma treatments of the InGaZnO thin films grown by sputtering. Acta Mater. 2011, 59, 6743–6750.

7

Andrews, S. C.; Fardy, M. A.; Moore, M. C.; Aloni, S.; Zhang, M. J.; Radmilovic, V.; Yang, P. D. Atomic-level control of the thermoelectric properties in polytypoid nanowires. Chem. Sci. 2011, 2, 706–714.

8

Zhou, H. T.; Li, L.; Chen, H. Y.; Guo, Z.; Jiao, S. J.; Sun, W. J. Realization of a fast-response flexible ultraviolet photodetector employing a metal- semiconductor-metal structure InGaZnO photodiode. RSC Adv. 2015, 5, 87993–87997.

9

Tsao, S. W.; Chang, T. C.; Huang, S. Y.; Chen, M. C.; Chen, S. C.; Tsai, C. T.; Kuo, Y. J.; Chen, Y. C.; Wu, W. C. Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid-State Electron. 2010, 54, 1497–1499.

10

Chiu, C. J.; Chang, S. P.; Chang, S. J. High-performance a-IGZO thin-film transistor using Ta2O5 gate dielectric. IEEE Electron Device Lett. 2010, 31, 1245–1247.

11

Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.

12

Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

13

Wang, Y.; Liu, S. W.; Sun, X. W.; Zhao, J. L.; Goh, G. K. L.; Vu, Q. V.; Yu, H. Y. Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors. J. Sol-Gel Sci. Technol. 2010, 55, 322–327.

14

Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272.

15

Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Orita, M.; Hirano, M.; Suzuki, T.; Honjyo, C.; Ikuhara, Y.; Hosono, H. Growth mechanism for single-crystalline thin film of InGaO3(ZnO)5 by reactive solid-phase epitaxy. J. Appl. Phys. 2004, 95, 5532–5539.

16

Ohta, H.; Nomura, K.; Orita, M.; Hirano, M.; Ueda, K.; Suzuki, T.; Ikuhara, Y.; Hosono, H. Single-crystalline films of the homologous series InGaO3(ZnO)m grown by reactive solid-phase epitaxy. Adv. Funct. Mater. 2003, 13, 139–144.

17

Nomura, K.; Kamiya, T.; Ohta, H.; Ueda, K.; Hirano, M.; Hosono, H. Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films. Appl. Phys. Lett. 2004, 85, 1993–1995.

18

Chen, H. G.; Lin, Y. S. Epitaxial growth of superlattice YbGaO3(ZnO)5 and InGaO3(ZnO)5 films by the combination of sputtering and reactive solid phase epitaxy. Thin Solid Films 2013, 545, 33–37.

19

Guo, Y. J.; Van Bart, B.; Locquet, J. P.; Seo, J. W. Formation of crystalline InGaO3(ZnO)n nanowires via the solid-phase diffusion process using a solution-based precursor. Nanotechnology 2015, 26, 495601.

20

Wu, L. L.; Liu, F. W.; Chu, Z. Q.; Liang, Y.; Xu, H. Y.; Lu, H. Q.; Zhang, X. T.; Li, Q.; Hark, S. K. High-yield synthesis of In2–xGaxO3(ZnO)3 nanobelts with a planar superlattice structure. CrystEngComm 2010, 12, 2047–2050.

21

Jayaswal, N.; Raman, A.; Kumar, N.; Singh, S. Design and analysis of electrostatic-charge plasma based dopingless IGZO vertical nanowire FET for ammonia gas sensing. Superlattices Microstruct. 2019, 125, 256–270.

22

Felizco, J. C.; Uenuma, M.; Senaha, D.; Ishikawa, Y.; Uraoka, Y. Growth of InGaZnO nanowires via a Mo/Au catalyst from amorphous thin film. Appl. Phys. Lett. 2017, 111, 033104.

23

Li, D. P.; Wang, G. Z.; Yang, Q. H.; Xie, X. Synthesis and photoluminescence of InGaO3(ZnO)m nanowires with perfect superlattice structure. J. Phys. Chem. C 2009, 113, 21512–21515.

24

Han, N.; Yang, Z. X.; Wang, F. Y.; Yip, S.; Dong, G. F.; Liang, X. G.; Hung, T.; Chen, Y. F.; Ho, J. C. Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen. ACS Appl. Mater. Interfaces 2015, 7, 5591–5597.

25

Han, N.; Wang, F. Y.; Yip, S.; Hou, J. J.; Xiu, F.; Shi, X. L.; Hui, A. T.; Hung, T.; Ho, J. C. GaAs nanowire Schottky barrier photovoltaics utilizing Au–Ga alloy catalytic tips. Appl. Phys. Lett. 2012, 101, 013105.

26

Fang, M.; Han, N.; Wang, F. Y.; Yang, Z. X.; Yip, S.; Dong, G. F.; Hou, J. J.; Chueh, Y.; Ho, J. C. Ⅲ-Ⅴ nanowires: Synthesis, property manipulations, and device applications. J. Nanomater. 2014, 2014, 702859.

27

Hui, A. T.; Wang, F. Y.; Han, N.; Yip, S.; Xiu, F.; Hou, J. J.; Yen, Y. T.; Hung, T.; Chueh, Y. L.; Ho, J. C. High-performance indium phosphide nanowires synthesized on amorphous substrates: From formation mechanism to optical and electrical transport measurements. J. Mater. Chem. 2012, 22, 10704–10708.

28

Johnson, M. C.; Aloni, S.; McCready, D. E.; Bourret-Courchesne, E. D. Controlled vapor−liquid−solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport. Cryst. Growth Des. 2006, 6, 1936–1941.

29

Vomiero, A.; Ferroni, M.; Comini, E.; Faglia, G.; Sberveglieri, G. Insight into the formation mechanism of one-dimensional indium oxide wires. Cryst. Growth Des. 2010, 10, 140–145.

30

Na, C. W.; Bae, S. Y.; Park, J. Short-period superlattice structure of Sn-doped In2O3(ZnO)4 and In2O3(ZnO)5 nanowires. J. Phys. Chem. B 2005, 109, 12785–12790.

31

Wu, L. L.; Liang, Y.; Liu, F. W.; Lu, H. Q.; Xu, H. Y.; Zhang, X. T.; Hark, S. Preparation of ZnO/In2O3(ZnO)n heterostructure nanobelts. CrystEngComm 2010, 12, 4152–4155.

32

Jie, J. S.; Wang, G. Z.; Han, X. H.; Hou, J. G. Synthesis and characterization of ZnO: In nanowires with superlattice structure. J. Phys. Chem. B 2004, 108, 17027–17031.

33

Huang, D. L.; Wu, L. L.; Zhang, X. T. Size-dependent InAlO3(ZnO)m nanowires with a perfect superlattice structure. J. Phys. Chem. C 2010, 114, 11783–11786.

34

Cho, S. W.; Kim, J. H.; Shin, S.; Cho, H. H.; Cho, H. K. All-solution- processed InGaO3(ZnO)m thin films with layered structure. J. Nanomater. 2013, 2013, 909786.

35

Seo, D. K.; Kong, B. H.; Cho, H. K. Composition controlled superlattice InGaO3(ZnO)m thin films by thickness of ZnO buffer layers and thermal treatment. Cryst. Growth Des. 2010, 10, 4638–4641.

36

Kamiya, T.; Takeda, Y.; Nomura, K.; Ohta, H.; Yanagi, H.; Hirano, M.; Hosono, H. Self-adjusted, three-dimensional lattice-matched buffer layer for growing ZnO epitaxial film:  Homologous series layered oxide, InGaO3(ZnO)5. Cryst. Growth Des. 2006, 6, 2451–2456.

37

Wu, L. L.; Li, Q.; Zhang, X. T.; Zhai, T. Y.; Bando, Y.; Golberg, D. Enhanced field emission performance of Ga-doped In2O3(ZnO)3 superlattice nanobelts. J. Phys. Chem. C 2011, 115, 24564–24568.

38

Keem, K.; Jeong, D. Y.; Kim, S.; Lee, M. S.; Yeo, I. S.; Chung, U. I.; Moon, J. T. Fabrication and device characterization of omega-shaped-gate ZnO nanowire field-effect transistors. Nano Lett. 2006, 6, 1454–1458.

39

Yang, Z. X.; Wang, F. Y.; Han, N.; Lin, H.; Cheung, H. Y.; Fang, M.; Yip, S.; Hung, T.; Wong, C. Y.; Ho, J. C. Crystalline GaSb nanowires synthesized on amorphous substrates: From the formation mechanism to p-channel transistor applications. ACS Appl. Mater. Interfaces 2013, 5, 10946–10952.

40

Yang, Z. X.; Han, N.; Fang, M.; Lin, H.; Cheung, H. Y.; Yip, S.; Wang, E. J.; Hung, T.; Wong, C. Y.; Ho, J. C. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires. Nat. Commun. 2014, 5, 5249.

41

Yang, Z. X.; Yip, S.; Li, D. P.; Han, N.; Dong, G. F.; Liang, X. G.; Shu, L.; Hung, T. F.; Mo, X. L.; Ho, J. C. Approaching the hole mobility limit of GaSb nanowires. ACS Nano 2015, 9, 9268–9275.

42

Li, W. Q.; Liao, L.; Xiao, X. H.; Zhao, X. Y.; Dai, Z. G.; Guo, S. S.; Wu, W.; Shi, Y.; Xu, J. X.; Ren, F. et al. Modulating the threshold voltage of oxide nanowire field-effect transistors by a Ga+ ion beam. Nano Res. 2014, 7, 1691–1698.

43

Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Size-dependent chemistry: Properties of nanocrystals. Chem. Eur. J. 2002, 8, 28–35.

DOI
44

Volokitin, Y.; Sinzig, J.; De Jongh, L. J.; Schmid, G.; Vargaftik, M. N.; Moiseevi, I. I. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature 1996, 384, 621–623.

45

Park, G. C.; Hwang, S. M.; Choi, J. H.; Kwon, Y. H.; Cho, H. K.; Kim, S. W.; Lim, J. H.; Joo, J. Effects of In or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process. Phys. Status Solidi A 2013, 210, 1552–1556.

46

Li, T. C.; Han, C. F.; Kuan, T. H.; Lin, J. F. Effects of sputtering-deposition inclination angle on the IGZO film microstructures, optical properties and photoluminescence. Opt. Mater. Express 2016, 6, 343–366.

47

Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010, 2, 15–22.

48

Jeong, S.; Ha, Y. G.; Moon, J.; Facchetti, A.; Marks, T. J. Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 2010, 22, 1346–1350.

49

Zhou, Z. Y.; Lan, C. Y.; Yip, S.; Wei, R. J.; Li, D. P.; Shu, L.; Ho, J. C. Towards high-mobility In2xGa2–2xO3 nanowire field-effect transistors. Nano Res. 2018, 11, 5935–5945.

50

Parthiban, S.; Kwon, J. Y. Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor. J. Mater. Res. 2014, 29, 1585–1596.

51

Lei, B.; Li, C.; Zhang, D.; Tang, T.; Zhou, C. Tuning electronic properties of In2O3 nanowires by doping control. Appl. Phys. A 2004, 79, 439–442.

52

Zhang, D. H.; Ma, H. L. Scattering mechanisms of charge carriers in transparent conducting oxide films. Appl. Phys. A 1996, 62, 487–492.

53

Hou, J. J.; Han, N.; Wang, F. Y.; Xiu, F.; Yip, S.; Hui, A. T.; Hung, T.; Ho, J. C. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices. ACS Nano 2012, 6, 3624–3630.

54

Han, N.; Wang, F. Y.; Hui, A. T; Hou, J. J.; Shan, G. C.; Xiu, F.; Hung, T.; Ho, J. C. Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates. Nanotechnology 2011, 22, 285607.

55

Han, N.; Hui, A. T.; Wang, F. Y.; Hou, J. J.; Xiu, F.; Hung, T.; Ho, J. C. Crystal phase and growth orientation dependence of GaAs nanowires on NixGay seeds via vapor-solid-solid mechanism. Appl. Phys. Lett. 2011, 99, 083114.

56

Zou, X. M.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z.; Xiong, Q. H. et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. ACS Nano 2013, 7, 804–810.

File
12274_2019_2434_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 March 2019
Revised: 30 April 2019
Accepted: 10 May 2019
Published: 22 May 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 51672229), the General Research Fund (CityU 11211317) and the Theme-based Research (T42-103/16-N) of the Research Grants Council of Hong Kong SAR, China, and the Science Technology and Innovation Committee of Shenzhen Municipality (NO. JCYJ20170818095520778), and a grant from the Shenzhen Research Institute, City University of Hong Kong.

Return