Journal Home > Volume 12 , Issue 8

Gold–iron oxide nano-heterostructures with a clear and well-defined morphology were prepared via a seed-assisted method. The synthesis process and the events of heterogeneous nucleation during the decomposition of the iron precursor were carefully studied in order to understand the mechanism of the reaction and to tailor the architecture of the fabricated heterostructures. When employing Au seeds of 3 and 5 nm, nanoparticles with a dimer-like morphology were produced due to the occurrence of a single iron oxide nucleation event. Otherwise, multi-nucleation events could be favored by two mechanisms: (i) by the incorporation of a reducing agent and the slowing down of the heating protocol, leading to a core–shell system; (ii) by the increase of the Au seed size to 8 nm, leading to a flower-like system. Further increase of the Au seed size to 12 nm using similar synthesis conditions promotes the homogeneous nucleation and growth of the iron oxide phase, without formation of heterostructures. An in-depth study was performed on the gold–iron oxide heterostructures to confirm the epitaxial growth of the oxide domain over the Au seed and to analyze the elemental distribution of the components within the heterostructures. Finally, it was found that the modification of the plasmonic properties of the Au nanoparticles are strongly influenced by the architecture of the heterostructure, with a more pronounced damping effect for the systems produced after multi-nucleation events.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Exploring the synthesis conditions to control the morphology of gold–iron oxide heterostructures

Show Author's information Pablo Tancredi1,§Luelc Souza da Costa2,3,§Sebastian Calderon4Oscar Moscoso-Londoño5,6Leandro M. Socolovsky7Paulo J. Ferreira4,8Diego Muraca5Daniela Zanchet2( )Marcelo Knobel5( )
Laboratory of Amorphous Solids, INTECIN, Faculty of Engineering,University of Buenos Aires – CONICET,Buenos Aires, CP,C1063ACV,Argentina;
Department of Inorganic Chemistry, Institute of Chemistry,University of Campinas (UNICAMP), CP6154,13083-970,Campinas, SP, Brazil;
Brazilian Nanotechnology National Laboratory (LNNano),Rua Giuseppe Máximo Scolfaro,10000,Campinas, SP, Brazil;
International Iberian Nanotechnology Laboratory (INL),Av. Mestre José Veiga s/n,4715-330,Braga, Portugal;
"Gleb Wataghin" Institute of Physics,University of Campinas (UNICAMP),CEP,13083-859,Campinas, SP, Brazil;
Autonomous University of Manizales,Antigua Estación del Ferrocarril, Manizales,CP,170001,Colombia;
Facultad Regional Santa Cruz,Universidad Tecnológica Nacional - CIT Santa Cruz (CONICET) – Av de los Inmigrantes 555,Río Gallegos, Santa Cruz,Argentina;
Materials Science and Engineering Program,The University of Texas at Austin,,Austin, Texas,78712,USA;

§ Pablo Tancredi and Luelc Souza da Costa contributed equally to this work.

Abstract

Gold–iron oxide nano-heterostructures with a clear and well-defined morphology were prepared via a seed-assisted method. The synthesis process and the events of heterogeneous nucleation during the decomposition of the iron precursor were carefully studied in order to understand the mechanism of the reaction and to tailor the architecture of the fabricated heterostructures. When employing Au seeds of 3 and 5 nm, nanoparticles with a dimer-like morphology were produced due to the occurrence of a single iron oxide nucleation event. Otherwise, multi-nucleation events could be favored by two mechanisms: (i) by the incorporation of a reducing agent and the slowing down of the heating protocol, leading to a core–shell system; (ii) by the increase of the Au seed size to 8 nm, leading to a flower-like system. Further increase of the Au seed size to 12 nm using similar synthesis conditions promotes the homogeneous nucleation and growth of the iron oxide phase, without formation of heterostructures. An in-depth study was performed on the gold–iron oxide heterostructures to confirm the epitaxial growth of the oxide domain over the Au seed and to analyze the elemental distribution of the components within the heterostructures. Finally, it was found that the modification of the plasmonic properties of the Au nanoparticles are strongly influenced by the architecture of the heterostructure, with a more pronounced damping effect for the systems produced after multi-nucleation events.

Keywords: nanoparticles, epitaxial growth, gold–iron oxide heterostructures, heterogeneous nucleation, HR-microscopy

References(50)

1

Carbone, L.; Cozzoli, P. D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5, 449–493.

2

Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem. , Int. Ed. 2010, 49, 4878–4897.

3

Buck, M. R.; Bondi, J. F.; Schaak, R. E. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 2012, 4, 37–44.

4

Ye, X. C.; Reifsnyder Hickey, D.; Fei, J. Y.; Diroll, B. T.; Paik, T.; Chen, J.; Murray, C. B. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation. J. Am. Chem. Soc. 2014, 136, 5106–5115.

5

Schick, I.; Gehrig, D.; Montigny, M.; Balke, B.; Panthöfer, M.; Henkel, A.; Laquai, F.; Tremel, W. Effect of charge transfer in magnetic-plasmonic Au@MOx (M = Mn, Fe) heterodimers on the kinetics of nanocrystal formation. Chem. Mater. 2015, 27, 4877–4884.

6

Xia, Y. N.; Gilroy, K. D.; Peng, H. C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

7

LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

8

Sun, Y. G. Interfaced heterogeneous nanodimers. Natl. Sci. Rev. 2015, 2, 329–348.

9

Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

10

Zeng, J.; Wang, X. P.; Hou, J. G. Colloidal hybrid nanocrystals: Synthesis, properties, and perspectives. In Nanocrystal. Masuda, Y., Ed.; InTech: Rijeka, 2011.

11

Choi, S. H.; Na, H. B.; Park, Y. I.; An, K.; Kwon, S. G.; Jang, Y.; Park, M. H.; Moon, J.; Son, J. S.; Song, I. C. et al. Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. J. Am. Chem. Soc. 2008, 130, 15573–15580.

12

Xu, C. J.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S. H. Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew. Chem. , Int. Ed. 2008, 47, 173–176.

13

Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A general approach to noble metal–metal oxide dumbbell nanoparticles and their catalytic application for Co oxidation. Chem. Mater. 2010, 22, 3277–3282.

14

Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng, N. F. Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation. Nano Res. 2010, 2, 975–983.

15

Gan, Z. B.; Zhao, A. W.; Zhang, M. F.; Wang, D. P.; Guo, H. Y.; Tao, W. Y.; Gao, Q.; Mao, R. R.; Liu, E. H. Fabrication and magnetic-induced aggregation of Fe3O4–noble metal composites for superior SERS performances. J. Nanopart. Res. 2013, 15, 1954.

16

Orlando, T.; Capozzi, A.; Umut, E.; Bordonali, L.; Mariani, M.; Galinetto, P.; Pineider, F.; Innocenti, C.; Masala, P.; Tabak, F. et al. Spin dynamics in hybrid iron oxide–gold nanostructures. J. Phys. Chem. C 2015, 119, 1224–1233.

17

Velasco, V.; Muñoz, L.; Mazarío, E.; Menéndez, N.; Herrasti, P.; Hernando, A.; Crespo, P. Chemically synthesized Au–Fe3O4 nanostructures with controlled optical and magnetic properties. J. Phys. D Appl. Phys. 2015, 48, 035502.

18

Costa, L. S. D.; Zanchet, D. Pretreatment impact on the morphology and the catalytic performance of hybrid heterodimers nanoparticles applied to CO oxidation. Catal. Today 2017, 282, 151–158.

19

Tomitaka, A.; Arami, H.; Raymond, A.; Yndart, A.; Kaushik, A.; Jayant, R. D.; Takemura, Y.; Cai, Y.; Toborek, M.; Nair, M. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale 2017, 9, 764–773.

20

Kakwere, H.; Materia, M. E.; Curcio, A.; Prato, M.; Sathya, A.; Nitti, S.; Pellegrino, T. Dually responsive gold-iron oxide heterodimers: Merging stimuli-responsive surface properties with intrinsic inorganic material features. Nanoscale 2018, 10, 3930–3944.

21

Nguyen, T. T.; Mammeri, F.; Ammar, S. Iron oxide and gold based magneto-plasmonic nanostructures for medical applications: A review. Nanomaterials (Basel) 2018, 8, 149.

22

Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R. A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.

23

Umut, E.; Pineider, F.; Arosio, P.; Sangregorio, C.; Corti, M.; Tabak, F.; Lascialfari, A.; Ghigna, P. Magnetic, optical and relaxometric properties of organically coated gold–magnetite (Au–Fe3O4) hybrid nanoparticles for potential use in biomedical applications. J. Magn. Magn. Mater. 2012, 324, 2373–2379.

24

Sarveena; Muraca, D.; Zélis, P. M.; Javed, Y.; Ahmad, N.; Vargas, J. M.; Moscoso-Londoño, O.; Knobel, M.; Singh, M.; Sharma, S. K. Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell. RSC Adv. 2016, 6, 70394–70404.

25

Fantechi, E.; Roca, A. G.; Sepúlveda, B.; Torruella, P.; Estradé, S.; Peiró, F.; Coy, E.; Jurga, S.; Bastús, N. G.; Nogués, J. et al. Seeded growth synthesis of Au–Fe3O4 heterostructured nanocrystals: Rational design and mechanistic insights. Chem. Mater. 2017, 29, 4022–4035.

26

Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.

27

Shi, W. L.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 2006, 6, 875–881.

28

Shevchenko, E. V.; Bodnarchuk, M. I.; Kovalenko, M. V.; Talapin, D. V.; Smith, R. K.; Aloni, S.; Heiss, W.; Alivisatos, A. P. Gold/iron oxide core/hollow-shell nanoparticles. Adv. Mater. 2008, 20, 4323–4329.

29

León Félix, L.; Coaquira, J. A. H.; Martínez, M. A. R.; Goya, G. F.; Mantilla, J.; Sousa, M. H.; de los Valladares, L.; Barnes, C. H. W.; Morais, P. C. Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Sci. Rep. 2017, 7, 41732.

30

Lloret, P.; Longinotti, G.; Ybarra, G.; Socolovsky, L.; Moina, C. Synthesis, characterization and biofunctionalization of magnetic gold nanostructured particles. Mater. Res. Bull. 2013, 48, 3671–3676.

31

Sheng, Y.; Xue, J. M. Synthesis and properties of Au-Fe3O4 heterostructured nanoparticles. J. Colloid Interface Sci. 2012, 374, 96–101.

32

Reguera, J.; Jiménez de Aberasturi, D.; Henriksen-Lacey, M.; Langer, J.; Espinosa, A.; Szczupak, B.; Wilhelm, C.; Liz-Marzan, L. M. Janus plasmonic-magnetic gold-iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale 2017, 9, 9467–9480.

33

Wei, Y. H.; Klajn, R.; Pinchuk, A. O.; Grzybowski, B. A. Synthesis, shape control, and optical properties of hybrid Au/Fe3O4 "nanoflowers". Small 2008, 4, 1635–1639.

34

Lou, L.; Yu, K.; Zhang, Z. L.; Huang, R.; Zhu, J. Z.; Wang, Y. T.; Zhu, Z. Q. Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res. 2012, 5, 272–282.

35

Chandra, S.; Huls, N. A. F.; Phan, M. H.; Srinath, S.; Garcia, M. A.; Lee, Y.; Wang, C.; Sun, S. H.; Iglesias, Ò.; Srikanth, H. Exchange bias effect in Au-Fe3O4 nanocomposites. Nanotechnology 2014, 25, 055702.

36

Feygenson, M.; Bauer, J. C.; Gai, Z.; Marques, C.; Aronson, M. C.; Teng, X. W.; Su, D.; Stanic, V.; Urban, V. S.; Beyer, K. A. et al. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold. Phys. Rev. B 2015, 92, 054416.

37

Pineider, F.; de Julián Fernández, C.; Videtta, V.; Carlino, E.; Al Hourani, A.; Wilhelm, F.; Rogalev, A.; Cozzoli, P. D.; Ghigna, P.; Sangregorio, C. Spin-polarization transfer in colloidal magnetic-plasmonic Au/iron oxide hetero-nanocrystals. ACS Nano 2013, 7, 857–866.

38

Shen, C. M.; Hui, C.; Yang, T. Z.; Xiao, C. W.; Tian, J. F.; Bao, L. H.; Chen, S. T.; Ding, H.; Gao, H. J. Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties. Chem. Mater. 2008, 20, 6939–6944.

39

Ingham, B.; Lim, T. H.; Dotzler, C. J.; Henning, A.; Toney, M. F.; Tilley, R. D. How nanoparticles coalesce: An in situ study of au nanoparticle aggregation and grain growth. Chem. Mater. 2011, 23, 3312–3317.

40

Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 2001, 123, 12798–12801.

41

Qiao, L.; Fu, Z.; Li, J.; Ghosen, J.; Zeng, M.; Stebbins, J.; Prasad, P. N.; Swihart, M. T. Standardizing size- and shape-controlled synthesis of monodisperse magnetite (Fe3O4) nanocrystals by identifying and exploiting effects of organic impurities. ACS Nano 2017, 11, 6370–6381.

42

Pinna, N.; Grancharov, S.; Beato, P.; Bonville, P.; Antonietti, M.; Niederberger, N. Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 2005, 17, 3044–3049.

43

Niederberger, M.; Pinna, N. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application; Springer: London, 2009.

DOI
44

Orbaek, A. W.; Morrow, L.; Maguire-Boyle, S. J.; Barron, A. R. Reagent control over the composition of mixed metal oxide nanoparticles. J. Exp. Nanosci. 2015, 10, 324–349.

45

Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

46

Shemer, G.; Tirosh, E.; Livneh, T.; Markovich, G. Tuning a colloidal synthesis to control Co2+ doping in ferrite nanocrystals. J. Phys. Chem. C 2007, 111, 14334−14338.

47

Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

48

Vreeland, E. C.; Watt, J.; Schober, G. B.; Hance, B. G.; Austin, M. J.; Price, A. D.; Fellows, B. D.; Monson, T. C.; Hudak, N. S.; Maldonado-Camargo, L. et al. Enhanced nanoparticle size control by extending LaMer's mechanism. Chem. Mater. 2015, 27, 6059–6066.

49

Peng, S.; Lee, Y.; Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A facile synthesis of monodisperse Au nanoparticles and their catalysis of Co oxidation. Nano Res. 2008, 1, 229–234.

50

Moscoso-Londoño, O.; Muraca, D.; Tancredi, P.; Cosio-Castañeda, C.; Pirota, K. R.; Socolovsky, L. M. Physicochemical studies of complex silver–magnetite nanoheterodimers with controlled morphology. J. Phys. Chem. C 2014, 118, 13168–13176.

File
12274_2019_2431_MOESM1_ESM.pdf (6.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 November 2018
Revised: 03 May 2019
Accepted: 06 May 2019
Published: 11 June 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES) - Finance Code 001, Brazil. O. M.-L., M. K. and D. M. acknowledge the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2014/26672-8; 2011-12356) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (303236/2017-5). L. M. S. and P. T. acknowledge the Argentinian agency Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (fellowship and project PIP 468CO). L. S. C. and D. Z. acknowledge Coordenação de aperfeiçoamento de pessoal de nivel superior (CAPES) (PhD fellowship 1140906), FAPESP (2011/50727-9) and CNPq (309373/2014-0). The authors acknowledge the Brazilian Nanotechnology National Laboratory (LNNano) for the use of electron microscopy facility under the projects ME–22345, 21812, TEM 13321, 18588, 19497, 20570, 20302 and 20220.

Return