Journal Home > Volume 12 , Issue 7

Lithium-ion capacitor (LIC) has been regarded as a promising energy storage system with high powder density and high energy density. However, the kinetic mismatch between the anode and the cathode is a major issue to be solved. Here we report a high-performance asymmetric LIC based on oxygen-deficient black-TiO2x/graphene (B-TiO2x/G) aerogel anode and biomass derived microporous carbon cathode. Through a facile one-pot hydrothermal process, graphene nanosheets and oxygen-vacancy-rich porous B-TiO2x nanosheets were self-assembled into three-dimensional (3D) interconnected B-TiO2x/G aerogel. Owing to the rich active sites, high conductivity and fast kinetics, the B-TiO2x/G aerogel exhibits remarkable reversible capacity, high rate capability and long cycle life when used as anode material for lithium ion storage. Moreover, density functional theory (DFT) calculation reveals that the incorporation of graphene nanosheets can reduce the energy barrier of Li+ diffusion in B-TiO2x. The asymmetric LIC based on B-TiO2x/G aerogel anode and naturally-abundant pine-needles derived microporous carbon (MPC) cathode work well within a large voltage window (1.0-4.0 V), and can deliver high energy density (166.4 Wh∙kg−1 at 200 mA∙g−1), and high power density (7.9 kW∙kg−1 at 17.1 Wh∙kg−1). Moreover, the LIC shows a high capacitance retention of 87% after 3, 000 cycles at 2, 000 mA∙g−1. The outstanding electrochemical performances indicate that the rationally-designed LICs have promising prospect to serve as advanced fast-charging energy storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-performance Li-ion capacitor based on black-TiO2−x/graphene aerogel anode and biomass-derived microporous carbon cathode

Show Author's information Guoyin Zhu1,§Lianbo Ma1,§Huinan Lin1,§Peiyang Zhao1Lei Wang1Yi Hu1Renpeng Chen1Tao Chen1Yanrong Wang1Zuoxiu Tie1( )Zhong Jin1,2( )
Key Laboratory of Mesoscopic Chemistry of MOE,Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University,Nanjing,210023,China;
Shenzhen Research Institute of Nanjing University,Shenzhen,518063,China;

§Guoyin Zhu, Lianbo Ma, and Huinan Lin contributed equally to this work.

Abstract

Lithium-ion capacitor (LIC) has been regarded as a promising energy storage system with high powder density and high energy density. However, the kinetic mismatch between the anode and the cathode is a major issue to be solved. Here we report a high-performance asymmetric LIC based on oxygen-deficient black-TiO2x/graphene (B-TiO2x/G) aerogel anode and biomass derived microporous carbon cathode. Through a facile one-pot hydrothermal process, graphene nanosheets and oxygen-vacancy-rich porous B-TiO2x nanosheets were self-assembled into three-dimensional (3D) interconnected B-TiO2x/G aerogel. Owing to the rich active sites, high conductivity and fast kinetics, the B-TiO2x/G aerogel exhibits remarkable reversible capacity, high rate capability and long cycle life when used as anode material for lithium ion storage. Moreover, density functional theory (DFT) calculation reveals that the incorporation of graphene nanosheets can reduce the energy barrier of Li+ diffusion in B-TiO2x. The asymmetric LIC based on B-TiO2x/G aerogel anode and naturally-abundant pine-needles derived microporous carbon (MPC) cathode work well within a large voltage window (1.0-4.0 V), and can deliver high energy density (166.4 Wh∙kg−1 at 200 mA∙g−1), and high power density (7.9 kW∙kg−1 at 17.1 Wh∙kg−1). Moreover, the LIC shows a high capacitance retention of 87% after 3, 000 cycles at 2, 000 mA∙g−1. The outstanding electrochemical performances indicate that the rationally-designed LICs have promising prospect to serve as advanced fast-charging energy storage devices.

Keywords: high energy density, lithium-ion capacitors, oxygen-deficient B-TiO2−x/graphene aerogel ano, biomass-derived microporous carbon

References(59)

1

Amatucci, G. G.; Badway, F.; Du Pasquier, A.; Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 2001, 148, A930-A939.

2

Ma, Y. F.; Chang, H. C.; Zhang, M.; Chen, Y. S. Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 2015, 27, 5296-5308.

3

Dong, S. Y.; Li, H. S.; Wang, J. J.; Zhang, X. G.; Ji, X. L. Improved flexible Li-ion hybrid capacitors: Techniques for superior stability. Nano Res. 2017, 10, 4448-4456.

4

Aravindan, V.; Lee, Y. S.; Madhavi, S. Best practices for mitigating irreversible capacity loss of negative electrodes in Li-ion batteries. Adv. Energy Mater. 2017, 7, 1602607.

5

Aravindan, V.; Cheah, Y. L.; Mak, W. F.; Wee, G.; Chowdari, B. V. R.; Madhavi, S. Fabrication of high energy-density hybrid supercapacitors using electrospun V2O5 nanofibers with a self-supported carbon nanotube network. ChemPlusChem 2012, 77, 570−575.

6

Ding, J.; Wang, H. L.; Li, Z.; Cui, K.; Karpuzov, D.; Tan X. H.; Kohandehghan, A.; Mitlin, D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 2015, 8, 941-955.

7

Jiang, H.; Hu, Y. J.; Guo, S. J.; Yan, C. Y.; Lee, P. S.; Li, C. Z. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038-6046.

8

Wang, H. W.; Zhu, C. R.; Chao, D. L.; Yan, Q. Y.; Fan, H. J. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 2017, 29, 1702093.

9

Wang, H. W.; Zhang, Y.; Ang, H. X.; Zhang, Y. Q.; Tan, H. T.; Zhang, Y. F.; Guo, Y. Y.; Franklin, J. B.; Wu, X. L.; Srinivasan, M. et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv. Funct. Mater. 2016, 26, 3082-3093.

10

Suryawanshi, A.; Aravindan, V.; Mhamane, D.; Yadav, P.; Patil, S.; Madhavi, S.; Ogale, S. Excellent performance of Fe3O4-perforated graphene composite as promising anode in practical Li-ion configuration with LiMn2O4. Energy Storage Mater. 2015, 1, 152−157.

11

Zhang, S. J.; Li, C.; Zhang, X.; Sun, X. Z.; Wang, K.; Ma, Y. W. High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode. ACS Appl. Mater. Interfaces 2017, 9, 17136-17144.

12

Wang, H. L.; Xu, Z. W.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X. H.; Zahiri, B.; Olsen, B. C.; Holt, C. M. B. et al. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett. 2014, 14, 1987−1994.

13

Yang, M.; Zhong, Y. R.; Ren, J. J.; Zhou, X. L.; Wei, J. P.; Zhou, Z. Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv. Energy Mater. 2015, 5, 1500550.

14

Wang, H. W.; Guan, C.; Wang, X. F.; Fan, H. J. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small 2015, 11, 1470−1477.

15

Tang, G.; Cao, L. J.; Xiao, P.; Zhang, Y. H.; Liu, H. A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO2 nanoparticles/conductive polymer/carbon nanotubes anode and an activated carbon cathode. J. Power Sources 2017, 355, 1-7.

16

Kong, L. P.; Zhang, C. F.; Wang, J. T.; Qiao, W. M.; Ling, L. C.; Long, D. H. Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 2015, 9, 11200−11208.

17

Song, M. Y.; Kim, N. R.; Yoon, H. J.; Cho, S. Y.; Jin, H. J.; Yun, Y. S. Long-lasting Nb2O5-based nanocomposite materials for Li-ion storage. ACS Appl. Mater. Interfaces 2017, 9, 2267-2274.

18

Li, T. Q.; Beidaghi, M.; Xiao, X.; Huang, L.; Hu, Z. M.; Sun, W. M.; Chen, X.; Gogotsi, Y.; Zhou, J. Ethanol reduced molybdenum trioxide for Li-ion capacitors. Nano Energy 2016, 26, 100-107.

19

Liu, W. W.; Li, J. D.; Feng, K.; Sy, A.; Liu, Y. S.; Lim, L.; Lui, G.; Tjandra, R.; Rasenthiram, L.; Chiu, G. et al. Advanced Li-ion hybrid supercapacitors based on 3D graphene-foam composites. ACS Appl. Mater. Interfaces 2016, 8, 25941-25953.

20

Yang, C.; Lan, J. L.; Liu, W. X.; Liu, Y.; Yu, Y. H.; Yang, X. P. High-performance Li-ion capacitor based on an activated carbon cathode and well-dispersed ultrafine TiO2 nanoparticles embedded in mesoporous carbon nanofibers anode. ACS Appl. Mater. Interfaces 2017, 9, 18710-18719.

21

Yang, S. B.; Feng, X. L.; Müllen, K. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv. Mater. 2011, 23, 3575−3579.

22

Myung, S. T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S. J.; Sun, Y. K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 2013, 6, 2609-2614.

23

Guan, D. D.; Yu, Q.; Xu, C.; Tang, C. J.; Zhou, L.; Zhao, D. Y.; Mai, L. Q. Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance. Nano Res. 2017, 10, 4351-4359.

24

Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H. M. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 2011, 21, 1717-1722.

25

Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161-13166.

26

Zhu, G. Y.; Chen, T.; Wang, L.; Ma, L. B.; Hu, Y.; Chen, R. P.; Wang, Y. R.; Wang, C. X.; Yan, W.; Tie, Z. X. et al. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Mater. 2018, 14, 246-252.

27

Kim, H.; Cho, M. Y.; Kim, M. H.; Park, K. Y.; Gwon, H.; Lee, Y.; Roh, K. C.; Kang, K. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 2013, 3, 1500-1506.

28

Wang, F. X.; Wang, C.; Zhao, Y. J.; Liu, Z. C.; Chang, Z.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Zhao, D. Y. A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets. Small 2016, 12, 6207-6213.

29

Aravindan, V.; Shubha, N.; Ling, W. C.; Madhavi, S. Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. J. Mater. Chem. A 2013, 1, 6145-6151.

30

Wang, G.; Liu, Z. Y.; Wu, J. N.; Lu, Q. Preparation and electrochemical capacitance behavior of TiO2-B nanotubes for hybrid supercapacitor. Mater. Lett. 2012, 71, 120-122.

31

Jung, H. G.; Venugopal, N.; Scrosati, B.; Sun, Y. K. A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. J. Power Sources 2013, 221, 266-271.

32

Liu, C. F.; Zhang, C. K.; Fu, H. Y.; Nan, X. H.; Cao, G. Z. Exploiting high-performance anode through tuning the character of chemical bonds for Li-ion batteries and capacitors. Adv. Energy Mater. 2017, 7, 1601127.

33

Wang, X. L.; Li, G.; Tjandra, R.; Fan, X. Y.; Xiao, X. C.; Yu, A. P. Fast lithium-ion storage of Nb2O5 nanocrystals in situ grown on carbon nanotubes for high-performance asymmetric supercapacitors. RSC Adv. 2015, 5, 41179-41185.

34

Lim, E.; Jo, C.; Kim, H.; Kim, M. H.; Mun, Y.; Chun, J.; Ye, Y.; Hwang, J.; Ha, K. S.; Roh, K. C. et al. Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano 2015, 9, 7497-7505.

35

Luo, J. Y.; Xia, Y. Y. Electrochemical profile of an asymmetric supercapacitor using carbon-coated LiTi2(PO4)3 and active carbon electrodes. J. Power Sources 2009, 186, 224-227.

36

Du, H. P.; Yang, H.; Huang, C. S.; He, J. J.; Liu, H. B.; Li, Y. L. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities. Nano Energy 2016, 22, 615-622.

37

Que, L. F.; Yu, F. D.; Wang, Z. B.; Gu, D. M. Pseudocapacitance of TiO2x/CNT anodes for high-performance quasi-solid-state Li-ion and Na-ion capacitors. Small 2018, 14, 1704508.

38

Huang, H. J.; Wang, X.; Tervoort, E.; Zeng, G. B.; Liu, T.; Chen, X.; Sologubenko, A.; Niederberger, M. Nano-sized structurally disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors. ACS Nano 2018, 12, 2753-2763.

39

Ma, L. B.; Gao, X.; Zhang, W. J.; Yuan, H.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Ultrahigh rate capability and ultralong cycling stability of sodium-ion batteries enabled by wrinkled black titania nanosheets with abundant oxygen vacancies. Nano Energy 2018, 53, 91-96.

40

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

41

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

42

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.

43

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

44

Perdew, J. P.; Burke, K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

45

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

46

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.

47

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

48

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

49

Myung, S. T.; Takahashi, N.; Komaba, S.; Yoon, C. S.; Sun, Y. K.; Amine, K.; Yashiro, H. Nanostructured TiO2 and its application in lithium-ion storage. Adv. Funct. Mater. 2011, 21, 3231−3241.

50

Tan, H. Q.; Zhao, Z.; Niu, M.; Mao, C. Y.; Cao, D. P.; Cheng, D. J.; Feng, P. Y.; Sun, Z. C. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 2014, 6, 10216−10223.

51

Zhang, Z. Y.; Xiao, F.; Guo, Y. L.; Wang, S.; Liu, Y. Q. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl. Mater. Interfaces 2013, 5, 2227-2233.

52

Zhu, G. Y.; Chen, T.; Hu, Y.; Ma, L. B.; Chen, R. P.; Lv, H. L.; Wang, Y. R.; Liang, J.; Li, X. J.; Yan, C. Z. et al. Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy 2017, 33, 229-237.

53

Chen, J.; Ding, Z. Y.; Wang, C.; Hou, H. S.; Zhang, Y.; Wang, C. W.; Zou, G. Q.; Ji, X. B. Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl. Mater. Interfaces 2016, 8, 9142-9151.

54

Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527-1535.

55

Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088-3095.

56

Wang, Y.; Su, X. W.; Lu, S. Shape-controlled synthesis of TiO2 hollow structures and their application in lithium batteries. J. Mater. Chem. 2012, 22, 1969-1976.

57

Guo, Z. L.; Zhou, J.; Sun, Z. M. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 2017, 5, 23530-23535.

58

Peng, Q.; Hu, K. M.; Sa, B. S.; Zhou, J.; Wu, B.; Hou, X. H.; Sun, Z. M. Unexpected elastic isotropy in a black phosphorene/TiC2 van der waals heterostructure with flexible Li-ion battery anode applications. Nano Res. 2017, 10, 3136-3150.

59

Fuertes, A. B.; Sevilla, M. Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 4344-4353.

File
12274_2019_2427_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2018
Revised: 09 April 2019
Accepted: 29 April 2019
Published: 14 May 2019
Issue date: July 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Key R & D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, and 2015CB659300), the National Natural Science Foundation of China (Nos. 21872069, 51761135104, and 21573108), Natural Science Foundation of Jiangsu Province (Nos. BK20180008 and BK20150583), High-Level Entrepreneurial and Innovative Talents Program of Jiangsu Province, and the Fundamental Research Funds for the Central Universities.

Return