Journal Home > Volume 12 , Issue 6

In the past two decades, the field of surface-enhanced Raman scattering (SERS) has flourished and many rational strategies have been reported for the successful construction of SERS substrates. However, it still lacks the mass-production and programmability for practical applications with arbitrary configurations, and it is highly desirable to develop SERS substrates with strong signal enhancement, large-scale surface area, easy fabrication and low cost. Herein, we demonstrate a large-area fabrication (1.5 m × 5 m) of low-cost (18.8 dollars per square meter), highly sensitive, flexible and transparent SERS substrate by a simple solution process. The high sensitivity of SERS substrate using 3, 3'-diethylthiatricarbocyanine iodide (DTTCI) as probe molecules is strongly dependent on the density and diameter of gold nanoparticles (NPs) on the surface of nylon mesh with the best enhancement factor (EF) of 9.17 × 1010 and the SERS detection limit of DTTCI molecules is as low as 10-14 M which shows no obvious degradation even after 10, 000 cycles of fatigue test, high temperature (above than 160 ℃) and acid-alkali treatment, indicating their excellent stability for the performance in all climates.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mass-production of flexible and transparent Te-Au nylon SERS substrate with excellent mechanical stability

Show Author's information Wei-Ran Huang1,§Cheng-Xin Yu2,§Yi-Ruo Lu1Hassan Muhammad1Jin-Long Wang1Jian-Wei Liu1( )Shu-Hong Yu1( )
Division of Nanomaterials & Chemistry,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China,Hefei,230026,China;
School of Physics and Materials Science,Anhui University,Hefei,230601,China;

§ Wei-Ran Huang and Cheng-Xin Yu contributed equally to this work.

Abstract

In the past two decades, the field of surface-enhanced Raman scattering (SERS) has flourished and many rational strategies have been reported for the successful construction of SERS substrates. However, it still lacks the mass-production and programmability for practical applications with arbitrary configurations, and it is highly desirable to develop SERS substrates with strong signal enhancement, large-scale surface area, easy fabrication and low cost. Herein, we demonstrate a large-area fabrication (1.5 m × 5 m) of low-cost (18.8 dollars per square meter), highly sensitive, flexible and transparent SERS substrate by a simple solution process. The high sensitivity of SERS substrate using 3, 3'-diethylthiatricarbocyanine iodide (DTTCI) as probe molecules is strongly dependent on the density and diameter of gold nanoparticles (NPs) on the surface of nylon mesh with the best enhancement factor (EF) of 9.17 × 1010 and the SERS detection limit of DTTCI molecules is as low as 10-14 M which shows no obvious degradation even after 10, 000 cycles of fatigue test, high temperature (above than 160 ℃) and acid-alkali treatment, indicating their excellent stability for the performance in all climates.

Keywords: transparent, gold nanoparticles, flexible, mass-production, surface-enhanced Raman scattering

References(39)

1

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

2

Parvin, N.; Jin, Q.; Wei, Y. Z.; Yu, R. B.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L. H.; Zhang, H.; Gao, M. Y. et al. Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection. Adv. Mater. 2017, 29, 1606755.

3

Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

4

Qian, X. M.; Nie, S. M. Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 2008, 37, 912–920.

5

Kneipp, K.; Kneipp, H.; Kneipp, J. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates—From single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 2006, 39, 443–450.

6

Harmsen, S.; Wall, M. A.; Huang, R. M.; Kircher, M. F. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 2017, 12, 1400–1414.

7

Lin, K. Q.; Yi, J.; Zhong, J. H.; Hu, S.; Liu, B. J.; Liu, J. Y.; Zong, C.; Lei, Z. C.; Wang, X.; Aizpurua, J. et al. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nat. Commun. 2017, 8, 14891.

8

Liu, J. W.; Wang, J. L.; Huang, W. R.; Yu, L.; Ren, X. F.; Wen, W. C.; Yu, S. H. Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate. Sci. Rep. 2012, 2, 987.

9

He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 2009, 3, 3993–4002.

10

Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

11

Alessandri, I.; Lombardi, J. R. Enhanced Raman scattering with dielectrics. Chem. Rev. 2016, 116, 14921–14981.

12

Granger, J. H.; Schlotter, N. E.; Crawford, A. C.; Porter, M. D. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem. Soc. Rev. 2016, 45, 3865–3882.

13

Zhu, Z. N.; Meng, H. F.; Liu, W. J.; Liu, X. F.; Gong, J. X.; Qiu, X. H.; Jiang, L.; Wang, D.; Tang, Z. Y. Superstructures and SERS properties of gold nanocrystals with different shapes. Angew. Chem., Int. Ed. 2011, 50, 1593–1596.

14

Cui, H.; Liu, P.; Yang, G. W. Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering. Appl. Phys. Lett. 2006, 89, 153124.

15

Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897.

16

Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured surfaces and assemblies as SERS media. Small 2008, 4, 1576–1599.

17

Yang, N. L.; Yuan, Q.; Zhai, J.; Wei, T. X.; Wang, D.; Jiang, L. Enhanced light harvesting in plasmonic dye-sensitized solar cells by using a topologically ordered gold light-trapping layer. ChemSusChem 2012, 5, 572–576.

18

Kumar, P.; Khosla, R.; Soni, M.; Deva, D.; Sharma, S. K. A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template. Sens. Actuators B Chem. 2017, 246, 477–486.

19

Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268–274.

20

Bianco, G. V.; Losurdo, M.; Giangregorio, M. M.; Capezzuto, P.; Bruno, G. Direct fabrication route to plastic-supported gold nanoparticles for flexible NIR-SERS. Plasmonics 2013, 8, 159–165.

21

Zhao, W. N.; Liu, X. G.; Xu, Y. B.; Wang, S. B.; Sun, T. Y.; Liu, S. S.; Wu, X. H.; Xu, Z. M. Polymer nanopillar array with Au nanoparticle inlays as a flexible and transparent SERS substrate. RSC Adv. 2016, 6, 35527–35531.

22

Kahraman, M.; Daggumati, P.; Kurtulus, O.; Seker, E.; Wachsmann-Hogiu, S. Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci. Rep. 2013, 3, 3396.

23

Wu, W.; Liu, L.; Dai, Z. G.; Liu, J. H.; Yang, S. L.; Zhou, L.; Xiao, X. H.; Jiang, C. Z.; Roy, V. A. L. Low-cost, disposable, flexible and highly reproducible screen printed SERS substrates for the detection of various chemicals. Sci. Rep. 2015, 5, 10208.

24

Zhang, C. P.; Yi, P. Y.; Peng, L. F.; Lai, X. M.; Chen, J.; Huang, M. Z.; Ni, J. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Sci. Rep. 2017, 7, 39814.

25

Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly(vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 2006, 22, 3830–3835.

26

Wang, K.; Yang, Y.; Liang, H. W.; Liu, J. W.; Yu, S. H. First sub-kilogram-scale synthesis of high quality ultrathin tellurium nanowires. Mater. Horiz. 2014, 1, 338–343.

27

Huang, W. R.; He, Z.; Wang, J. L.; Liu, J. W.; Yu, S. H. Mass production of nanowire-nylon flexible transparent smart windows for PM2.5 capture. iScience 2019, 12, 333–341.

28

Liu, J. W.; Huang, W. R.; Gong, M.; Zhang, M.; Wang, J. L.; Zheng, J.; Yu, S. H. Ultrathin hetero-nanowire-based flexible electronics with tunable conductivity. Adv. Mater. 2013, 25, 5910–5915.

29

Wang, W. H.; Zhan, H. R.; Cheng, F. S.; Tang, C. Y.; Mei, J.; Hui, D.; Liu, Y.; Zhou, Q.; Lau, W. M. "Zero-transfer" production of large-scale, flexible nanostructured film at water surface for surface enhancement Raman spectroscopy. Appl. Phys. Lett. 2015, 106, 211604.

30

Schmidt, M. S.; Hübner, J.; Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 2012, 24, OP11–OP18.

31

Sanger, K.; Durucan, O.; Wu, K. Y.; Thilsted, A. H.; Heiskanen, A.; Rindzevicius, T.; Schmidt, M. S.; Zór, K.; Boisen, A. Large-scale, lithography-free production of transparent nanostructured surface for dual-functional electrochemical and SERS sensing. ACS Sens. 2017, 2, 1869–1875.

32

Wu, K. Y.; Li, T.; Schmidt, M. S.; Rindzevicius, T.; Boisen, A.; Ndoni, S. Gold nanoparticles sliding on recyclable nanohoodoos—Engineered for surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2018, 28, 1704818.

33

Araújo, A.; Pimentel, A.; Oliveira, M. J.; Mendes, M. J.; Franco, R.; Fortunato, E.; Águas, H.; Martins, R. Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flex. Print. Electron. 2017, 2, 014001.

34

Li, Z. B.; Meng, G. W.; Huang, Q.; Hu, X. Y.; He, X.; Tang, H. B.; Wang, Z. W.; Li, F. D. Ag nanoparticle-grafted PAN-nanohump array films with 3D high-density hot spots as flexible and reliable SERS substrates. Small 2015, 11, 5452–5459.

35

Yilmaz, M.; Ozdemir, M.; Erdogan, H.; Tamer, U.; Sen, U.; Facchetti, A.; Usta, H.; Demirel, G. Micro-/nanostructured highly crystalline organic semiconductor films for surface-enhanced Raman spectroscopy applications. Adv. Funct. Mater. 2015, 25, 5669–5676.

36

Ryu, Y.; Kang, G. M.; Lee, C. W.; Kim, K. Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer. RSC Adv. 2015, 5, 76085–76091.

37

Talian, I.; Mogensen, K. B.; Oriňák, A.; Kaniansky, D.; Hübner, J. Surface-enhanced Raman spectroscopy on novel black silicon-based nanostructured surfaces. J. Raman Spectrosc. 2009, 40, 982–986.

38

Jana, N. R.; Pal, T. Anisotropic metal nanoparticles for use as surface-enhanced Raman substrates. Adv. Mater. 2007, 19, 1761–1765.

39

Raghavan, V.; Fan, H. M.; McCarthy, E. K.; Dockery, P.; Wheatley, A.; Keogh, I.; Olivo, M. Synthesis and characterisation of dual plasmonic gold nanostars as high-performance surface-enhanced Raman spectroscopy substrate. Micro Nano Lett. 2016, 11, 769–774.

File
12274_2019_2422_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 February 2019
Revised: 14 April 2019
Accepted: 22 April 2019
Published: 29 May 2019
Issue date: June 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51732011, 21431006, 21761132008, 21401183 and 21771168), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH036), the National Basic Research Program of China (No. 2014CB931800), the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015HSC-UE007), the Fundamental Research Funds for the Central Universities (Nos. WK2100000005 and WK2090050043), and the Joint Funds from Hefei National Synchrotron Radiation Laboratory (No. UN2018LHJJ). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Return