Journal Home > Volume 12 , Issue 7

Here, by using atomically resolved scanning transmission electron microscopy and electron energy loss spectroscopy, we investigate the structural and chemical evolution of Li3V2(PO4)3 (LVP) upon the high-voltage window (3.0–4.8 V). We find that the valence of vanadium gradually increases towards the core corresponding to the formation of electrochemically inactive Li3-xV2(PO4)3 (L3-xVP) phases. These Li-deficient phases exhibit structure distortion with superstructure stripes, likely caused by the migration of the vanadium, which can slow down the lithium ion diffusion or even block the diffusion channels. Such kinetic limitations lead to the formation of Li-deficient phase along with capacity loss. Thus, the LVP continuously losses of electrochemical activity and Li-deficient phases gradually grow from the particle core towards the surface during cycling. After 500 cycles, the thickness of active LVP layer decreases to be ~ 5–20 nm. Moreover, the micromorphology and chemical composition of solid electrolyte interphase (SEI) have been investigated, indicating the thick SEI film also contributes to the capacity loss. The present work reveals the structural and chemical evolution in the cycled electrode materials at an atomic scale, which is essential to understand the voltage fading and capacity decaying of LVP cathode.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomic-scale structural and chemical evolution of Li3V2(PO4)3 cathode cycled at high voltage window

Show Author's information Shulin Chen1,2,3Jian Zou1Yuehui Li3Ning Li3Mei Wu3Jinghuang Lin2Jingmin Zhang3Jian Cao2Jicai Feng2Xiaobin Niu1Jianming Bai4Junlei Qi2( )Peng Gao2,3,5,6( )Liping Wang1( )Hong Li7
School of Materials and Energy, State Key Laboratory of Electronic Thin Film and Integrated Devices,University of Electronic Science and Technology of China,Chengdu,610054,China;
State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin,150001,China;
Electron Microscopy Laboratory,School of Physics, Peking University,Beijing,100871,China;
National Synchrotron Light Source Ⅱ,Brookhaven National Laboratory, Upton,New York,11973,USA;
Collaborative Innovation Center of Quantum Matter,Beijing,100871,China;
International Center for Quantum Materials,School of Physics, Peking University,Beijing,100871,China;
Institute of Physics,Chinese Academy of Sciences,Beijing,100190,China;

Abstract

Here, by using atomically resolved scanning transmission electron microscopy and electron energy loss spectroscopy, we investigate the structural and chemical evolution of Li3V2(PO4)3 (LVP) upon the high-voltage window (3.0–4.8 V). We find that the valence of vanadium gradually increases towards the core corresponding to the formation of electrochemically inactive Li3-xV2(PO4)3 (L3-xVP) phases. These Li-deficient phases exhibit structure distortion with superstructure stripes, likely caused by the migration of the vanadium, which can slow down the lithium ion diffusion or even block the diffusion channels. Such kinetic limitations lead to the formation of Li-deficient phase along with capacity loss. Thus, the LVP continuously losses of electrochemical activity and Li-deficient phases gradually grow from the particle core towards the surface during cycling. After 500 cycles, the thickness of active LVP layer decreases to be ~ 5–20 nm. Moreover, the micromorphology and chemical composition of solid electrolyte interphase (SEI) have been investigated, indicating the thick SEI film also contributes to the capacity loss. The present work reveals the structural and chemical evolution in the cycled electrode materials at an atomic scale, which is essential to understand the voltage fading and capacity decaying of LVP cathode.

Keywords: lithium-ion batteries, scanning transmission electron microscopy, Li-deficient lithium vanadium phosphate, capacity fading, solid electrolyte interphase, electron energy loss spectroscopy

References(43)

1

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.

2

Kraytsberg, A.; Ein-Eli, Y. Higher, stronger, better… a review of 5 Volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2012, 2, 922-939.

3

Liu, H. W.; Cheng, C. X.; Huang, X. T.; Li, J. L. Hydrothermal synthesis and rate capacity studies of Li3V2(PO4)3 nanorods as cathode material for lithium-ion batteries. Electrochim. Acta 2010, 55, 8461-8465.

4

Li, Y. Z.; Zhou, Z.; Ren, M. M.; Gao, X. P.; Yan, J. Electrochemical performance of nanocrystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol-gel method. Electrochim. Acta 2006, 51, 6498-6502.

5

Gutierrez, A.; Qiao, R. M.; Wang, L. P.; Yang, W. L.; Wang, F.; Manthiram A. High-capacity, aliovalently doped olivine LiMn1-3x/2Vxx/2PO4 cathodes without carbon coating. Chem. Mater. 2014, 26, 3018-3026.

6

Rui, X. H.; Yan, Q. Y.; Skyllas-Kazacos, M.; Lim, T. M. Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. J. Power Sources 2014, 258, 19-38.

7

Wang, L. P.; Bai, J. M.; Gao, P.; Wang, X. Y.; Looney, J. P.; Wang, F. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries. Chem. Mater. 2015, 27, 5712-5718.

8

Chen, Q. Q.; Wang, J. M.; Tang, Z.; He, W. C.; Shao, H. B.; Zhang, J. Q. Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol-gel method. Electrochim. Acta 2007, 52, 5251-5257.

9

Luo, Y. Z.; Xu, X.; Zhang, Y. X.; Pi, Y. Q.; Zhao, Y. L.; Tian, X. C.; An, Q. Y.; Wei, Q. L.; Mai, L. Q. Hierarchical carbon decorated Li3V2(PO4)3 as a bicontinuous cathode with high-rate capability and broad temperature adaptability. Adv. Energy Mater. 2014, 4, 1400107.

10

von Hagen, R.; Lepcha, A.; Song, X. F.; Tyrra, W.; Mathur, S. Influence of electrode design on the electrochemical performance of Li3V2(PO4)3/C nanocomposite cathode in lithium ion batteries. Nano Energy 2013, 2, 304-313.

11

Zhang, X. F.; Kühnel, R. S.; Hu, H. T.; Eder, D.; Balducci, A. Going nano with protic ionic liquids-the synthesis of carbon coated Li3V2(PO4)3 nanoparticles encapsulated in a carbon matrix for high power lithium-ion batteries. Nano Energy 2015, 12, 207-214.

12

Han, D. W.; Lim, S. J.; Kim, Y. I.; Kang, S. H.; Lee, Y. C.; Kang, Y. M. Facile lithium ion transport through superionic pathways formed on the surface of Li3V2(PO4)3/C for high power Li ion battery. Chem. Mater. 2014, 26, 3644-3650.

13

Yoon, J.; Muhammad, S.; Jang, D.; Sivakumar, N.; Kim, J.; Jang, W. H.; Lee, Y. S.; Park, Y. U.; Kang, K.; Yoon, W. S. Study on structure and electrochemical properties of carbon-coated monoclinic Li3V2(PO4)3 using synchrotron based in situ X-ray diffraction and absorption. J. Alloy. Compd. 2013, 569, 76-81.

14

Kim, S.; Zhang, Z. X.; Wang, S. L.; Yang, L.; Cairns, E. J.; Penner-Hahn, J. E.; Deb, A. Electrochemical and structural investigation of the mechanism of irreversibility in Li3V2(PO4)3 cathodes. J. Phys. Chem. C 2016, 120, 7005-7012.

15

Min, X. J.; Huo, H.; Li, R. H.; Zhou, J. G.; Hu, Y. F.; Dai, C. S. Cycling stability of Li3V2 (PO4)3/C cathode in a broad electrochemical window. J. Electroanal. Chem. 2016, 774, 76-82.

16

Kang, J.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Im, W. B.; Han, J.; Lee, J. Y.; Kim, J. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries. Sci. Rep. 2014, 4, 4047.

17

Wang, L. P.; Xu, J.; Wang, C.; Cui, X. M.; Li, J. Z.; Zhou, Y. N. A better understanding of the capacity fading mechanisms of Li3V2(PO4)3. RSC Adv. 2015, 5, 71684-71691.

18

Williams, D. B.; Carter, C. B. Transmission Electron Microscopy; Plenum Press: New York, 1996.

DOI
19

Yan, P. F.; Zheng, J. M.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.

20

Yan, P. F.; Zheng, J. M.; Zhang, J. G.; Wang, C. M. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co, and Mn upon the battery cycling of layered cathode. Nano Lett. 2017, 17, 3946-3951.

21

Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529.

22

Yan, P. F.; Nie, A. M.; Zheng, J. M.; Zhou, Y. G.; Lu, D. P.; Zhang, X. F.; Xu, R.; Belharouak, I.; Zu, X. T.; Xiao, J. et al. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett. 2015, 15, 514-522.

23

Zheng, J. M.; Gu, M.; Xiao, J.; Zuo, P. J.; Wang, C. M.; Zhang, J. G. Corrosion/ fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 2013, 13, 3824-3830.

24

Pieczonka, N. P. W.; Liu, Z. Y.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J. H. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J. Phys. Chem. C 2013, 117, 15947-15957.

25

Huang, H.; Yin, S. C.; Kerr, T.; Taylor, N.; Nazar, L. F. Nanostructured composites: A high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv. Mater. 2002, 14, 1525-1528.

DOI
26

Wang, L. P.; Zhang, L.; Wang, Q. J.; Li, W. J.; Wu, B.; Jia, W. S.; Wang, Y. H.; Li, J. Z.; Li, H. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater. 2018, 10, 16-23.

27

Wang, L. P.; Wang, Q. J.; Jia, W. S.; Chen, S. L.; Gao, P.; Li, J. Z. Li Metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J. Power Sources 2017, 342, 175-182.

28

Horrocks, G. A.; Braham, E. J.; Liang, Y. F.; De Jesus, L. R.; Jude, J.; Velázquez, J. M.; Prendergast, D.; Banerjee, S. Vanadium K-edge X-ray absorption spectroscopy as a probe of the heterogeneous lithiation of V2O5: First-principles modeling and principal component analysis. J. Phys. Chem. C 2016, 120, 23922-23932.

29

Lin, X. W.; Wang, Y. Y.; Dravid, V. P.; Michalakos, P. M.; Kung, M. C. Valence states and hybridization in vanadium oxide systems investigated by transmission electron-energy-loss spectroscopy. Phys. Rev. B 1993, 47, 3477-3481.

30

Tan, H. Y.; Verbeeck, J.; Abakumov, A.; Van Tendeloo, G. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 2012, 116, 24-33.

31

Yin, S. C.; Strobel, P. S.; Grondey, H.; Nazar, L. F. Li2.5V2(PO4)3: A room- temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3. Chem. Mater. 2004, 16, 1456-1465.

32

Patoux, S.; Wurm, C.; Morcrette, M.; Rousse, G.; Masquelier, C. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3. J. Power Sources 2003, 119-121, 278-284.

33

Yin, S. C.; Grondey, H.; Strobel, P.; Anne, M.; Nazar, L. F. Electrochemical property: Structure relationships in monoclinic Li3−yV2(PO4)3. J. Am. Chem. Soc. 2003, 125, 10402-10411.

34

Woodward, D. I.; Reaney, I. M. Electron diffraction of tilted perovskites. Acta Crystallogr., Sect. B: Struct. Sci. 2005, 61, 387-399.

35

Zhang, W.; Topsakal, M.; Cama, C.; Pelliccione, C. J.; Zhao, H.; Ehrlich, S.; Wu, L. J.; Zhu, Y. M.; Frenkel, A. I.; Takeuchi, K. J. et al. Multi-stage structural transformations in zero-strain lithium titanate unveiled by in situ X-ray absorption fingerprints. J. Am. Chem. Soc. 2017, 139, 16591-16603.

36

Yin, S. C.; Grondey, H.; Strobel, P.; Huang, H.; Nazar, L. F. Charge ordering in lithium vanadium phosphates: Electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 2003, 125, 326-327.

37

Gao, P.; Ishikawa, R.; Tochigi, E.; Kumamoto, A.; Shibata, N.; Ikuhara, Y. Atomic-scale tracking of a phase transition from spinel to rocksalt in lithium manganese oxide. Chem. Mater. 2017, 29, 1006-1013.

38

Wang, L.; Zhao, J. S.; He, X. M.; Gao, J.; Li, J. J.; Wan, C. R.; Jiang, C. Y. Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries. Int. J. Electrochem. Sci. 2012, 7, 345-353.

39

Sun, C. W.; Rajasekhara, S.; Dong, Y. Z.; Goodenough, J. B. Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 3772-3776.

40

Wang, W. H.; Zhang, J. L.; Jia, Z.; Dai, C. S.; Hu, Y. F.; Zhou, J. G.; Xiao, Q. F. Enhancement of the cycling performance of Li3V2(PO4)3/C by stabilizing the crystal structure through Zn2+ doping. Phys. Chem. Chem. Phys. 2014, 16, 13858-13865.

41

Yuan, W.; Yan, J.; Tang, Z. Y.; Sha, O.; Wang, J. M.; Mao, W. F.; Ma, L. Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability. Electrochim. Acta 2012, 72, 138-142.

42

Zhang, S.; Wu, Q.; Deng, C.; Liu, F. L.; Zhang, M.; Meng, F. L.; Gao, H. Synthesis and characterization of Ti-Mn and Ti-Fe codoped Li3V2(PO4)3 as cathode material for lithium ion batteries. J. Power Sources 2012, 218, 56-64.

43

Ren, M. M.; Zhou, Z.; Li, Y. Z.; Gao, X. P.; Yan, J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources 2006, 162, 1357-1362.

File
12274_2019_2421_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 February 2019
Revised: 14 April 2019
Accepted: 21 April 2019
Published: 08 May 2019
Issue date: July 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51502032, 51575135, U1537206, 51502007, and 51672007), the National Basic Research Program of China (Nos. 2016YFA0300804 and 2016YFA0300903], and "2011 Program" Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter. We gratefully acknowledge Electron Microscopy Laboratory in Peking University for the use of Cs corrected electron microscope.

Return