Journal Home > Volume 12 , Issue 6

A reproducible synthetic strategy was developed for facile large-scale (200 mg) synthesis of surface silanized magnetite (Fe3O4) nanoparticles (NPs) for biological applications. After further coupling a phosphate-specific affinity ligand, these functionalized magnetic NPs were used for the highly specific enrichment of phosphoproteins from a complex biological mixture. Moreover, correlating the surface silane density of the silanized magnetite NPs to their resultant enrichment performance established a simple and reliable quality assurance control to ensure reproducible synthesis of these NPs routinely in large scale and optimal phosphoprotein enrichment performance from batch-to-batch. Furthermore, by successful exploitation of a top-down phosphoproteomics strategy that integrates this high throughput nanoproteomics platform with online liquid chromatography (LC) and tandem mass spectrometry (MS/MS), we were able to specifically enrich, identify, and characterize endogenous phosphoproteins from highly complex human cardiac tissue homogenate. This nanoproteomics platform possesses a unique combination of scalability, specificity, reproducibility, and efficiency for the capture and enrichment of low abundance proteins in general, thereby enabling downstream proteomics applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reproducible large-scale synthesis of surface silanized nanoparticles as an enabling nanoproteomics platform: Enrichment of the human heart phosphoproteome

Show Author's information David S. Roberts1Bifan Chen1Timothy N. Tiambeng1Zhijie Wu1Ying Ge1,2( )Song Jin1( )
Department of Chemistry,University of Wisconsin-Madison,Madison, Wisconsin,53706,USA;
Department of Cell and Regenerative Biology,University of Wisconsin-Madison,Madison, Wisconsin,53705,USA;

Abstract

A reproducible synthetic strategy was developed for facile large-scale (200 mg) synthesis of surface silanized magnetite (Fe3O4) nanoparticles (NPs) for biological applications. After further coupling a phosphate-specific affinity ligand, these functionalized magnetic NPs were used for the highly specific enrichment of phosphoproteins from a complex biological mixture. Moreover, correlating the surface silane density of the silanized magnetite NPs to their resultant enrichment performance established a simple and reliable quality assurance control to ensure reproducible synthesis of these NPs routinely in large scale and optimal phosphoprotein enrichment performance from batch-to-batch. Furthermore, by successful exploitation of a top-down phosphoproteomics strategy that integrates this high throughput nanoproteomics platform with online liquid chromatography (LC) and tandem mass spectrometry (MS/MS), we were able to specifically enrich, identify, and characterize endogenous phosphoproteins from highly complex human cardiac tissue homogenate. This nanoproteomics platform possesses a unique combination of scalability, specificity, reproducibility, and efficiency for the capture and enrichment of low abundance proteins in general, thereby enabling downstream proteomics applications.

Keywords: surface functionalization, nanoparticles, mass spectrometry, large-scale, nanoproteomics, phosphoprotein enrichment, top-down proteomics

References(67)

1

De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241.

2

Mitragotri, S.; Anderson, D. G.; Chen, X. Y.; Chow, E. K.; Ho, D.; Kabanov, A. V; Karp, J. M.; Kataoka, K.; Mirkin, C. A.; Petrosko, S. H. et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 2015, 9, 6644–6654.

3

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

4

Gao, J. H.; Gu, H. W.; Xu, B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107.

5

Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem., Int. Ed. 2010, 49, 3280–3294.

6

Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Anarjan, N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res. 2016, 9, 2203–2225.

7

Xie, J.; Liu, G.; Eden, H. S.; Ai, H.; Chen, X. Y. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res. 2011, 44, 883–892.

8

Ho, D.; Sun, X. L.; Sun, S. H. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44, 875–882.

9

Zhang, W. Z.; Liu, L.; Chen, H. M.; Hu, K.; Delahunty, I.; Gao, S.; Xie, J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018, 8, 2521–2548.

10

Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

11

White, M. A.; Johnson, J. A.; Koberstein, J. T.; Turro, N. J. Toward the syntheses of universal ligands for metal oxide surfaces: Controlling surface functionality through click chemistry. J. Am. Chem. Soc. 2006, 128, 11356–11357.

12

Grancharov, S. G.; Zeng, H.; Sun, S. H.; Wang, S. X.; O'Brien, S.; Murray, C. B.; Kirtley, J. R.; Held, G. A. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J. Phys. Chem. B 2005, 109, 13030–13035.

13

Hong, R.; Fischer, N. O.; Emrick, T.; Rotello, V. M. Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem. Mater. 2005, 17, 4617–4621.

14

Xu, C. J.; Xu, K. M.; Gu, H. W.; Zheng, R. K.; Liu, H.; Zhang, X. X.; Guo, Z. H.; Xu, B. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 9938–9939.

15

Lattuada, M.; Hatton, T. A. Functionalization of monodisperse magnetic nanoparticles. Langmuir 2007, 23, 2158–2168.

16

De Palma, R.; Peeters, S.; Van Bael, M. J.; Van Den Rul, H.; Bonroy, K.; Laureyn, W.; Mullens, J.; Borghs, G.; Maes, G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 2007, 19, 1821–1831.

17

Plueddemann, E. P. Reminiscing on silane coupling agents. J. Adhes. Sci. Technol. 1991, 5, 261–277.

18

Arkles, B.; Steinmetz, J. R.; Zazyczny, J.; Mehta, P. Factors contributing to the stability of alkoxysilanes in aqueous solution. J. Adhes. Sci. Technol. 1992, 6, 193–206.

19

Cano, M.; Núñez-Lozano, R.; Lumbreras, R.; González-Rodríguez, V.; Delgado-García, A.; Jiménez-Hoyuela, J. M.; De La Cueva-Méndez, G. Partial PEGylation of superparamagnetic iron oxide nanoparticles thinly coated with amine-silane as a source of ultrastable tunable nanosystems for biomedical applications. Nanoscale 2017, 9, 812–822.

20

Jana, N. R.; Earhart, C.; Ying, J. Y. Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem. Mater. 2007, 19, 5074–5082.

21

Smolensky, E. D.; Park, H. Y. E.; Berquó, T. S.; Pierre, V. C. Surface functionalization of magnetic iron oxide nanoparticles for MRI applications— Effect of anchoring group and ligand exchange protocol. Contrast Media Mol. Imaging 2011, 6, 189–199.

22

Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347–355.

23

Cai, W. X.; Tucholski, T. M.; Gregorich, Z. R.; Ge, Y. Top-down proteomics: Technology advancements and applications to heart diseases. Expert Rev. Proteomics 2016, 13, 717–730.

24

Chen, B. F.; Brown, K. A.; Lin, Z. Q.; Ge, Y. Top-down proteomics: Ready for prime time? Anal. Chem. 2018, 90, 110–127.

25

Anderson, N. L.; Anderson, N. G. The human plasma proteome. Mol. Cell. Proteomics 2002, 1, 845–867.

26

Siuti, N.; Kelleher, N. L. Decoding protein modifications using top-down mass spectrometry. Nat. Methods 2007, 4, 817–821.

27

Brown, K. A.; Chen, B. F.; Guardado-Alvarez, T. M.; Lin, Z. Q.; Hwang, L.; Ayaz-Guner, S.; Jin, S.; Ge, Y. A photocleavable surfactant for top-down proteomics. Nat. Methods, in press, DOI: 10.1038/s41592-019-0391-1.

28

Xie, S. N.; Moya, C.; Bilgin, B.; Jayaraman, A.; Walton, S. P. Emerging affinity-based techniques in proteomics. Expert Rev. Proteomics 2009, 6, 573–583.

29

Hunter, T. Signaling—2000 and beyond. Cell 2000, 100, 113–127.

30

Hwang, L.; Ayaz-Guner, S.; Gregorich, Z. R.; Cai, W. X.; Valeja, S. G.; Jin, S.; Ge, Y. Specific enrichment of phosphoproteins using functionalized multivalent nanoparticles. J. Am. Chem. Soc. 2015, 137, 2432–2435.

31

Chen, B. F.; Hwang, L.; Ochowicz, W.; Lin, Z. Q.; Guardado-Alvarez, T. M.; Cai, W. X.; Xiu, L. C.; Dani, K.; Colah, C.; Jin, S. et al. Coupling functionalized cobalt ferrite nanoparticle enrichment with online LC/MS/MS for top-down phosphoproteomics. Chem. Sci. 2017, 8, 4306–4311.

32

Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.

33

Pan, Y.; Long, M. J. C.; Lin, H. C.; Hedstrom, L.; Xu, B. Magnetic nanoparticles for direct protein sorting inside live cells. Chem. Sci. 2012, 3, 3495–3499.

34

Aubin-Tam, M. E.; Hamad-Schifferli, K. Structure and function of nanoparticle-protein conjugates. Biomed. Mater. 2008, 3, 034001.

35

Bagwe, R. P.; Hilliard, L. R.; Tan, W. H. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357–4362.

36

De Palma, R.; Laureyn, W.; Frederix, F.; Bonroy, K.; Pireaux, J. J.; Borghs, G.; Maes, G. Formation of dense self-assembled monolayers of (n-decyl)trichlorosilanes on Ta/Ta2O5. Langmuir 2007, 23, 443–451.

37

Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21.

38

Scott, A. W.; Garimella, V.; Calabrese, C. M.; Mirkin, C. A. Universal biotin–PEG-linked gold nanoparticle probes for the simultaneous detection of nucleic acids and proteins. Bioconjugate Chem. 2017, 28, 203–211.

39

Li, Y. F.; Zhang, Y. M.; Wang, W. P. Phototriggered targeting of nanocarriers for drug delivery. Nano Res. 2018, 11, 5424–5438.

40

Ling, D. S.; Lee, N.; Hyeon, T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc. Chem. Res. 2015, 48, 1276–1285.

41

Na, H. B.; Song, I. C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21, 2133–2148.

42

Rejeeth, C.; Pang, X. C.; Zhang, R.; Xu, W.; Sun, X. M.; Liu, B.; Lou, J. T.; Wan, J. J.; Gu, H.; Yan, W. et al. Extraction, detection, and profiling of serum biomarkers using designed Fe3O4@SiO2@HA core–shell particles. Nano Res. 2018, 11, 68–79.

43

Cano, M.; De La Cueva-Méndez, G. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry. Chem. Commun. 2015, 51, 3620–3622.

44

Jiang, J. K.; Oberdörster, G.; Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanoparticle Res. 2009, 11, 77–89.

45

Gao, F. P.; Cai, Y. Y.; Zhou, J.; Xie, X. X.; Ouyang, W. W.; Zhang, Y. H.; Wang, X. F.; Zhang, X. D.; Wang, X. W.; Zhao, L. Y. et al. Pullulan acetate coated magnetite nanoparticles for hyper-thermia: Preparation, characterization and in vitro experiments. Nano Res. 2010, 3, 23–31.

46

Xu, L. J.; Feng, Y.; Fan, Z. K.; Yun, D. C. Research into the grading method of kiwi fruit based on volume estimation and surface defect. INMATEH - Agric. Eng. 2014, 44, 93–102.

47

Li, Y. C.; Lin, Y. S.; Tsai, P. J.; Chen, C. T.; Chen, W. Y.; Chen, Y. C. Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides. Anal. Chem. 2007, 79, 7519–7525.

48

Panja, P.; Das, P.; Mandal, K.; Jana, N. R. Hyperbranched polyglycerol grafting on the surface of silica-coated nanoparticles for high colloidal stability and low nonspecific interaction. ACS Sustainable Chem. Eng. 2017, 5, 4879–4889.

49

Wang, J.; Shen, H. J.; Huang, C.; Ma, Q. Q.; Tan, Y. N.; Jiang, F. L.; Ma, C.; Yuan, Q. Highly efficient and multidimensional extraction of targets from complex matrices using aptamer-driven recognition. Nano Res. 2017, 10, 145–156.

50

Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.

51

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

52

Wang, C.; Ye, Y. Q.; Hu, Q. Y.; Bellotti, A.; Gu, Z. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook. Adv. Mater. 2017, 29, 1606036.

53

Greig, F. H.; Nixon, G. F. Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple disease states. Pharmacol. Ther. 2014, 143, 265–274.

54

Lee, J.; Bartholomeusz, C.; Krishnamurthy, S.; Liu, P.; Saso, H.; Lafortune, T. A.; Hortobagyi, G. N.; Ueno, N. T. PEA-15 unphosphorylated at both serine 104 and serine 116 inhibits ovarian cancer cell tumorigenicity and progression through blocking β-catenin. Oncogenesis 2012, 1, e22.

55

Xie, X. H.; Tang, H. L.; Liu, P.; Kong, Y. N.; Wu, M. Q.; Xiao, X. S.; Yang, L.; Gao, J.; Wei, W.; Lee, J. et al. Development of PEA-15 using a potent non-viral vector for therapeutic application in breast cancer. Cancer Lett. 2015, 356, 374–381.

56

Cai, W. X.; Guner, H.; Gregorich, Z. R.; Chen, A. J.; Ayaz-Guner, S.; Peng, Y.; Valeja, S. G.; Liu, X. W.; Ge, Y. MASH suite pro: A comprehensive software tool for top-down proteomics. Mol. Cell. Proteomics 2016, 15, 703–714.

57

Lee, S. H.; Seo, J.; Park, S. Y.; Jeong, M. H.; Choi, H. K.; Lee, C. J.; Kim, M. J.; Guk, G.; Lee, S.; Park, H. et al. Programmed cell death 5 suppresses AKT-mediated cytoprotection of endothelium. Proc. Natl. Acad. Sci. USA 2018, 115, 4672–4677.

58

Park, S. Y.; Seo, J.; Choi, H. K.; Oh, H. J.; Guk, G.; Lee, Y. H.; Lee, J.; Jun, W. J.; Choi, K. C.; Yoon, H. G. Protein serine/threonine phosphatase PPEF-1 suppresses genotoxic stress response via dephosphorylation of PDCD5. Sci. Rep. 2017, 7, 39222.

59

Kwak, S.; Lee, S. H.; Han, E. J.; Park, S. Y.; Jeong, M. H.; Seo, J.; Park, S. H.; Sung, G. J.; Yoo, J. Y.; Yoon, H. G. et al. Serine/threonine kinase 31 promotes PDCD5-mediated apoptosis in p53-dependent human colon cancer cells. J. Cell. Physiol. 2019, 234, 2649–2658.

60

Gregorich, Z. R.; Cai, W. X.; Lin, Z. Q.; Chen, A. J.; Peng, Y.; Kohmoto, T.; Ge, Y. Distinct sequences and post-translational modifications in cardiac atrial and ventricular myosin light chains revealed by top-down mass spectrometry. J. Mol. Cell. Cardiol. 2017, 107, 13–21.

61

Cai, W. X.; Tucholski, T.; Chen, B. F.; Alpert, A. J.; McIlwain, S.; Kohmoto, T.; Jin, S.; Ge, Y. Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal. Chem. 2017, 89, 5467–5475.

62

Kinoshita, E.; Kinoshita-Kikuta, E.; Koike, T. Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat. Protoc. 2009, 4, 1513–1521.

63

Schmidt, S. R.; Schweikart, F.; Andersson, M. E. Current methods for phosphoprotein isolation and enrichment. J. Chromatogr. B 2007, 849, 154–162.

64

Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258, 598–599.

65

Kaur-Atwal, G.; Weston, D. J.; Bonner, P. L. R.; Crosland, S.; Green, P. S.; Creaser, C. S. Immobilised metal affinity chromatography for the analysis of proteins and peptides. Curr. Anal. Chem. 2008, 4, 127–135.

66

Nita-Lazar, A.; Saito-Benz, H.; White, F. M. Quantitative phosphoproteomics by mass spectrometry: Past, present, and future. Proteomics 2008, 8, 4433–4443.

67

Regnier, F. E.; Kim, J. Proteins and proteoforms: new separation challenges. Anal. Chem. 2018, 90, 361–373.

File
12274_2019_2418_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 February 2019
Revised: 09 April 2019
Accepted: 12 April 2019
Published: 29 May 2019
Issue date: June 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The financial support for this project is provided by NIH R01 GM117058 (to S. J. and Y. G.). Moreover, Y. G. would like to acknowledge the NIH R01 GM125085 and S10 OD018475. T. N. T. would like to acknowledge support from the NIH Chemistry-Biology Interface Training Program NIH T32GM008505.

Return