Journal Home > Volume 12 , Issue 7

Colloidal suspensions of plasmonic nanoparticles (NPs) are a well-established tool for biomedical applications and enhanced spectroscopy because of their strong optical response. The specific response is greatly dependent on the NP shape. The strong optical activity of chiral NPs has created special interest but fabrication of chiral NPs in solution remains challenging. Here, we present an approach whereby three-dimensional (3D) chiral Au nano-hooks, fabricated with the parallel hole-mask colloidal lithography (HMCL) method, can be lifted off from a glass substrate in a controllable manner by using a combined treatment with oxygen plasma oxidation and a reduction step in solution. This method has the advantage of being based on established techniques and not requiring strong acids or complex substrates as in etching based approaches. We furthermore demonstrate the integration of the hook NPs into reversibly cross-linked hydrogels inspired by mussel catechol chemistry but containing an oxidation resistant catechol analogue grafted onto poly(allylamine) crosslinked by coordination of Al3+ and how this facilitates the remote analysis of hydrogel microenvironment, e.g. the water content. The suspended particles are promising candidates for optically active surface-enhanced Raman spectroscopy (SERS), asymmetric photo catalysis or aggregation sensing. The integration into hydrogels to produce functional hydrogels holds benefits for applications of metamaterials in optics, sensing or activation in environmental remediation or drug delivery.

File
12274_2019_2412_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 January 2019
Revised: 08 April 2019
Accepted: 09 April 2019
Published: 24 April 2019
Issue date: July 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the Independent Research Fund Denmark through grant DFF - 4184-00301 and by the Lundbeck Foundation through grant R180-2014-3468. Affiliation with the center for integrated materials research (iMAT) at Aarhus University is gratefully acknowledged.

Return