Journal Home > Volume 12 , Issue 9

Layered transition metal dichalcogenides (TMDCs) have been extensively studied owing to their unique physical and chemical properties. Weak van der Waals (vdW) interactions between the stacking layers of TMDCs allow intercalation of various species including monovalent alkali, divalent alkaline earth and multivalent metal ions, zero-valent transition metals, as well as organic molecules, all of which can drastically alter fundamental properties of the TMDCs. The urge to understand the phenomena and the desire to exploit them for applications have inspired a great deal of investigations. A large portion of the mystery has been unveiled over the past decade of intense research; however, many questions remain open and require further explorations. This review is concerned with investigations on structural and electronic evolution of TMDCs driven by electrochemically controlled intercalations. Herein, we aim to survey the recent advances and experimental platforms for monitoring the intercalation processes in situ by utilizing nanodevices. In addition, several inquiries and prospects are outlined in a broader context for future avenues of studies.


menu
Abstract
Full text
Outline
About this article

Recent progress on in situ characterizations of electrochemically intercalated transition metal dichalcogenides

Show Author's information Sajad Yazdani1,2,§Milad Yarali1,2,§Judy J. Cha1,2,§( )
Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenCT06511USA
Energy Sciences InstituteYale University West CampusWest HavenCT06516USA

§ Sajad Yazdani, Milad Yarali and Judy J. Cha contributed equally to this work.

Abstract

Layered transition metal dichalcogenides (TMDCs) have been extensively studied owing to their unique physical and chemical properties. Weak van der Waals (vdW) interactions between the stacking layers of TMDCs allow intercalation of various species including monovalent alkali, divalent alkaline earth and multivalent metal ions, zero-valent transition metals, as well as organic molecules, all of which can drastically alter fundamental properties of the TMDCs. The urge to understand the phenomena and the desire to exploit them for applications have inspired a great deal of investigations. A large portion of the mystery has been unveiled over the past decade of intense research; however, many questions remain open and require further explorations. This review is concerned with investigations on structural and electronic evolution of TMDCs driven by electrochemically controlled intercalations. Herein, we aim to survey the recent advances and experimental platforms for monitoring the intercalation processes in situ by utilizing nanodevices. In addition, several inquiries and prospects are outlined in a broader context for future avenues of studies.

Keywords: transmission electron microscopy (TEM), transition metal dichalcogenides, electrochemical intercalation, in situ characterizations, magnetotransport measurements

References(103)

1

Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

2

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

3

Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

4

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

5

Wang, F.; Zhang, Y. B.; Tian, C. S.; Girit, C.; Zettl, A.; Crommie, M.; Shen, Y. R. Gate-variable optical transitions in graphene. Science 2008, 320, 206–209.

6

Li, Z. Q.; Henriksen, E. A.; Jiang, Z.; Hao, Z.; Martin, M. C.; Kim, P.; Stormer, H. L.; Basov, D. N. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 2008, 4, 532–535.

7

Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 2012, 6, 866–872.

8

Hor, Y. S.; Williams, A. J.; Checkelsky, J. G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H. W.; Yazdani, A.; Ong, N. P.; Cava, R. J. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 2010, 104, 057001.

9

Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Superconductivity in CuxTiSe2. Nat. Phys. 2006, 2, 544–550.

10

Profeta, G.; Calandra, M.; Mauri, F. Phonon-mediated superconductivity in graphene by lithium deposition. Nat. Phys. 2012, 8, 131–134.

11

Zhang, R. Y.; Tsai, I. L.; Chapman, J.; Khestanova, E.; Waters, J.; Grigorieva, I. V. Superconductivity in potassium-doped metallic polymorphs of MoS2. Nano Lett. 2016, 16, 629–636.

12

Ye, J. T.; Zhang, Y. J.; Akashi, R.; Bahramy, M. S.; Arita, R.; Iwasa, Y. Superconducting dome in a gate-tuned band insulator. Science 2012, 338, 1193–1196.

13

Morosan, E.; Zandbergen, H. W.; Li, L.; Lee, M.; Checkelsky, J. G.; Heinrich, M.; Siegrist, T.; Ong, N. P.; Cava, R. J. Sharp switching of the magnetization in Fe1/4TaS2. Phys. Rev. B 2007, 75, 104401.

14

Hardy, W. J.; Chen, C. W.; Marcinkova, A.; Ji, H.; Sinova, J.; Natelson, D.; Morosan, E. Very large magnetoresistance in Fe0.28TaS2 single crystals. Phys. Rev. B 2015, 91, 054426.

15

Koski, K. J.; Cha, J. J.; Reed, B. W.; Wessells, C. D.; Kong, D. S.; Cui, Y. High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons. J. Am. Chem. Soc. 2012, 134, 7584–7587.

16

Cha, J. J.; Koski, K. J.; Huang, K. C. Y.; Wang, K. X.; Luo, W. D.; Kong, D. S.; Yu, Z. F.; Fan, S. H.; Brongersma, M. L.; Cui, Y. Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation. Nano Lett. 2013, 13, 5913–5918.

17

Yao, J.; Koski, K. J.; Luo, W. D.; Cha, J. J.; Hu, L. B.; Kong, D. S.; Narasimhan, V. K.; Huo, K. F.; Cui, Y. Optical transmission enhacement through chemically tuned two-dimensional bismuth chalcogenide nanoplates. Nat. Commun. 2014, 5, 5670.

18

Bao, W. Z.; Wan, J. Y.; Han, X. G.; Cai, X. H.; Zhu, H. L.; Kim, D.; Ma, D. K.; Xu, Y. L.; Munday, J. N.; Drew, H. D. et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 2014, 5, 4224.

19

Wang, Y. C.; Ou, J. Z.; Balendhran, S.; Chrimes, A. F.; Mortazavi, M.; Yao, D. D.; Field, M. R.; Latham, K.; Bansal, V.; Friend, J. R. et al. Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes. ACS Nano 2013, 7, 10083–10093.

20

Wan, C. L.; Wang, Y. F.; Wang, N.; Norimatsu, W.; Kusunoki, M.; Koumoto, K. Intercalation: Building a natural superlattice for better thermoelectric performance in layered chalcogenides. J. Electron. Mater. 2011, 40, 1271–1280.

21

Kang, J. S.; Ke, M.; Hu, Y. J. Ionic intercalation in two-dimensional van der Waals materials: In situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett. 2017, 17, 1431–1438.

22

Sood, A.; Xiong, F.; Chen, S. D.; Wang, H. T.; Selli, D.; Zhang, J. S.; McClellan, C. J.; Sun, J.; Donadio, D.; Cui, Y. et al. An electrochemical thermal transistor. Nat. Commun. 2018, 9, 4510.

23

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

24

Withers, F.; Yang, H.; Britnell, L.; Rooney, A. P.; Lewis, E.; Felten, A.; Woods, C. R.; Sanchez Romaguera, V.; Georgiou, T.; Eckmann, A. et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 2014, 14, 3987–3992.

25

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

26

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

27

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

28

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

29

Zhou, Y.; Silva, J. L.; Woods, J. M.; Pondick, J. V.; Feng, Q. L.; Liang, Z. X.; Liu, W.; Lin, L.; Deng, B. C.; Brena, B. et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater. 2018, 30, 1706076.

30

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

31

Zhu, Y.; Peng, L. L.; Fang, Z. W.; Yan, C. S.; Zhang, X.; Yu, G. H. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 2018, 30, 1706347.

32

Wan, J. Y.; Bao, W. Z.; Liu, Y.; Dai, J. Q.; Shen, F.; Zhou, L. H.; Cai, X. H.; Urban, D.; Li, Y. Y.; Jungjohann, K. et al. In situ investigations of Li-MoS2 with planar batteries. Adv. Energy Mater. 2015, 5, 1401742.

33

Zhu, Y.; Qian, Y. M.; Ju, Z. Y.; Peng, L. L.; Yu, G. H. Solvent-dependent intercalation and molecular configurations in metallocene-layered crystal superlattices. Nano Lett. 2018, 18, 6071–6075.

34

Chen, D. H.; Peng, L. L.; Yuan, Y. F.; Zhu, Y.; Fang, Z. W.; Yan, C. S.; Chen, G.; Shahbazian-Yassar, R.; Lu, J.; Amine, K. et al. Two-dimensional Holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing. Nano Lett. 2017, 17, 3907–3913.

35

Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.

36

Liang, Y. L.; Yoo, H. D.; Li, Y. F.; Shuai, J.; Calderon, H. A.; Robles Hernandez, F. C.; Grabow, L. C.; Yao, Y. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. Nano Lett. 2015, 15, 2194–2202.

37

Yarali, M.; Biçer, E.; Gürsel, S. A.; Yürüm, A. The effect of pH on the interlayer distances of elongated titanate nanotubes and their use as a Li-ion battery anode. Nanotechnology 2016, 27, 015401.

38

Yarali, M.; Biçer, E.; Gürsel, S. A.; Yürüm, A. Expansion of titanate nanotubes by the use of a surfactant and its improved performance as an anode in Li-ion batteries. Electrochim. Acta 2016, 220, 453–464.

39

Kashfi-Sadabad, R.; Yazdani, S.; Huan, T. D.; Cai, Z.; Pettes, M. T. Role of oxygen vacancy defects in the electrocatalytic activity of substoichiometric molybdenum oxide. J. Phys. Chem. C 2018, 122, 18212–18222.

40

Yazdani, S.; Kashfi-Sadabad, R.; Huan, T. D.; Morales-Acosta, M. D.; Pettes, M. T. Polyelectrolyte-assisted oxygen vacancies: A new route to defect engineering in molybdenum oxide. Langmuir 2018, 34, 6296–6306.

41

Yazdani, S.; Pettes, M. T. Nanoscale self-assembly of thermoelectric materials: A review of chemistry-based approaches. Nanotechnology 2018, 29, 432001.

42

Dresselhaus, M. S. Intercalation in Layered Materials; Springer Science+ Business Media, LLC: New York, 1986.

DOI
43

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

44

Wang, H. T.; Yuan, H. T.; Sae Hong, S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664–2680.

45

Wan, J. Y.; Lacey, S. D.; Dai, J. Q.; Bao, W. Z.; Fuhrer, M. S.; Hu, L. B. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chem. Soc. Rev. 2016, 45, 6742–6765.

46

Jung, Y.; Zhou, Y.; Cha, J. J. Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 2016, 3, 452–463.

47

Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693–6697.

48

Xiong, F.; Wang, H. T.; Liu, X. G.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y. Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 2015, 15, 6777–6784.

49

Gao, P.; Wang, L. P.; Zhang, Y. Y.; Huang, Y.; Liu, K. H. Atomic-scale probing of the dynamics of sodium transport and intercalation-induced phase transformations in MoS2. ACS Nano 2015, 9, 11296–11301.

50

Huang, Q. M.; Li, X. M.; Sun, M. H.; Zhang, L.; Song, C. Z.; Zhu, L.; Chen, P.; Xu, Z.; Wang, W. L.; Bai, X. D. The mechanistic insights into the 2H-1T phase transition of MoS2 upon alkali metal intercalation: From the study of dynamic sodiation processes of MoS2 nanosheets. Adv. Mater. Interfaces 2017, 4, 1700171.

51

Zhang, J. S.; Yang, A. K.; Wu, X.; van de Groep, J.; Tang, P. Z.; Li, S. R.; Liu, B. F.; Shi, F. F.; Wan, J. Y.; Li, Q. T. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 2018, 9, 5289.

52

Kühne, M.; Börrnert, F.; Fecher, S.; Ghorbani-Asl, M.; Biskupek, J.; Samuelis, D.; Krasheninnikov, A. V.; Kaiser, U.; Smet, J. H. Reversible superdense ordering of lithium between two graphene sheets. Nature 2018, 564, 234–239.

53

Kühne, M.; Paolucci, F.; Popovic, J.; Ostrovsky, P. M.; Maier, J.; Smet, J. H. Ultrafast lithium diffusion in bilayer graphene. Nat. Nanotechnol. 2017, 12, 895–900.

54

Zhao, S. Y. F.; Elbaz, G. A.; Bediako, D. K.; Yu, C.; Efetov, D. K.; Guo, Y. S.; Ravichandran, J.; Min, K. A.; Hong, S.; Taniguchi, T. et al. Controlled electrochemical intercalation of graphene/h-BN van der Waals heterostructures. Nano Lett. 2018, 18, 460–466.

55

Bediako, D. K.; Rezaee, M.; Yoo, H.; Larson, D. T.; Zhao, S. Y. F.; Taniguchi, T.; Watanabe, K.; Brower-Thomas, T. L.; Kaxiras, E.; Kim, P. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 2018, 558, 425–429.

56

Zhang, J. S.; Sun, J.; Li, Y. B.; Shi, F. F.; Cui, Y. Electrochemical control of copper intercalation into nanoscale Bi2Se3. Nano Lett. 2017, 17, 1741–1747.

57

Kolobov, A. V.; Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides; Springer: Cham, 2016.

DOI
58

Kertesz, M.; Hoffmann, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 1984, 106, 3453–3460.

59

Liang, L. B.; Puretzky, A. A.; Sumpter, B. G.; Meunier, V. Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale 2017, 9, 15340–15355.

60

Huang, Q.M.; Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. In-situ TEM investigation of MoS2 upon alkali metal intercalation. Sci. China. Chem. 2018, 61, 222–227.

61

Fan, S. X.; Zou, X. L.; Du, H. D.; Gan, L.; Xu, C. J.; Lv, W.; He, Y. B.; Yang, Q. H.; Kang, F. Y.; Li, J. Theoretical investigation of the intercalation chemistry of lithium/sodium ions in transition metal dichalcogenides. J. Phys. Chem. C 2017, 121, 13599–13605.

62

Mortazavi, M.; Wang, C.; Deng, J. K.; Shenoy, V. B.; Medhekar, N. V. Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 2014, 268, 279–286.

63

Bissessur, R.; Kanatzidis, M. G.; Schindler, J. L.; Kannewurf, C. R. Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2. J. Chem. Soc. Chem. Commun. 1993, 1582–1585.

64

Py, M. A.; Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 1983, 61, 76–84.

65

Yang, D.; Frindt, R. F. Li-intercalation and exfoliation of WS2. J. Phys. Chem. Solids 1996, 57, 1113–1116.

66

Gordon, R. A.; Yang, D.; Crozier, E. D.; Jiang, D. T.; Frindt, R. F. Structures of exfoliated single layers of WS2, MoS2, and MoSe2 in aqueous suspension. Phys. Rev. B 2002, 65, 125407.

67

Tsai, H. L.; Heising, J.; Schindler, J. L.; Kannewurf, C. R.; Kanatzidis, M. G. Exfoliated-restacked phase of WS2. Chem. Mater. 1997, 9, 879–882.

68

Ganal, P.; Olberding, W.; Butz, T.; Ouvrard, G. Soft chemistry induced host metal coordination change from octahedral to trigonal prismatic in 1T-TaS2. Solid State Ion. 1993, 59, 313–319.

69

Wypych, F.; Schöllhorn, R. 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc. Chem. Commun. 1992, 1386–1388.

70

Prouzet, E.; Heising, J.; Kanatzidis, M. G. Structure of restacked and pillared WS2: An X-ray absorption study. Chem. Mater. 2003, 15, 412–418.

71

Yang, D.; Jiménez Sandoval, S.; Divigalpitiya, W. M. R.; Irwin, J. C.; Frindt, R. F. Structure of single-molecular-layer MoS2. Phys. Rev. B 1991, 43, 12053–12056.

72

Qin, X. R.; Yang, D.; Frindt, R. F.; Irwin, J. C. Real-space imaging of single-layer MoS2 by scanning tunneling microscopy. Phys. Rev. B 1991, 44, 3490–3493.

73

Hu, T.; Li, R.; Dong, J. M. A new (2×1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations. J. Chem. Phys. 2013, 139, 174702.

74

Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T'-MoS2- and 1T'-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.

75

Heising, J.; Kanatzidis, M. G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 1999, 121, 638–643.

76

Benavente, E.; Santa Ana, M. A.; Mendizábal, F.; González, G. Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 2002, 224, 87–109.

77

Wypych, F.; Weber, T.; Prins, R. Scanning tunneling microscopic investigation of 1T-MoS2. Chem. Mater. 1998, 10, 723–727.

78

Heising, J.; Kanatzidis, M. G. Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 1999, 121, 11720–11732.

79

Qin, X. R.; Yang, D.; Frindt, R. F.; Irwin, J. C. Scanning tunneling microscopy of single-layer MoS2 in water and butanol. Ultramicroscopy 1992, 42–44, 630–636.

80

Dungey, K. E.; Curtis, M. D.; Penner-Hahn, J. E. Structural characterization and thermal stability of MoS2 intercalation compounds. Chem. Mater. 1998, 10, 2152–2161.

81

Wypych, F.; Solenthaler, C.; Prins, R.; Weber, T. Electron diffraction study of intercalation compounds derived from 1T-MoS2. J. Solid State Chem. 1999, 144, 430–436.

82

Wypych, F.; Weber, T.; Prins, R. Scanning tunneling microscopic investigation of Kx(H2O)yMoS2. Surf. Sci. 1997, 380, L474-L478.

83

Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, 32, 751–767.

84

Basu, S.; Worrell, W. L. Fast Ion Transport in Solids; Vashishta, P.; Mundy, J. N.; Shenoy, G., Eds.; Elsevier: Amsterdam, 1979.

85

Kim, N.; Kim, K. S.; Jung, N.; Brus, L.; Kim, P. Synthesis and electrical characterization of magnetic bilayer graphene intercalate. Nano Lett. 2011, 11, 860–865.

86

Gallagher, P.; Lee, M.; Petach, T. A.; Stanwyck, S. W.; Williams, J. R.; Watanabe, K.; Taniguchi, T.; Goldhaber-Gordon, D. A high-mobility electronic system at an electrolyte-gated oxide surface. Nat. Commun. 2015, 6, 6437.

87

Browning, A.; Kumada, N.; Sekine, Y.; Irie, H.; Muraki, K.; Yamamoto, H. Evaluation of disorder introduced by electrolyte gating through transport measurements in graphene. Appl. Phys. Express 2016, 9, 065102.

88

Ovchinnikov, D.; Gargiulo, F.; Allain, A.; Pasquier, D. J.; Dumcenco, D.; Ho, C. H.; Yazyev, O. V.; Kis, A. Disorder engineering and conductivity dome in ReS2 with electrolyte gating. Nat. Commun. 2016, 7, 12391.

89

Couto, N. J. G.; Costanzo, D.; Engels, S.; Ki, D. K.; Watanabe, K.; Taniguchi, T.; Stampfer, C.; Guinea, F.; Morpurgo, A. F. Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices. Phys. Rev. X 2014, 4, 041019.

90

Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614–617.

91

Enyashin, A. N.; Seifert, G. Density-functional study of LixMoS2 intercalates (0 ≤ x ≤ 1). Comput. Theor. Chem. 2012, 999, 13–20.

92

Somoano, R. B.; Hadek, V.; Rembaum, A. Alkali metal intercalates of molybdenum disulfide. J. Chem. Phys. 1973, 58, 697–701.

93

Gregory, T. D.; Hoffman, R. J.; Winterton, R. C. Nonaqueous electrochemistry of magnesium: Applications to energy storage. J. Electrochem. Soc. 1990, 137, 775–780.

94

Bruce, P. G.; Krok, F.; Nowinski, J.; Gibson, V. C.; Tavakkoli, K. Chemical intercalation of magnesium into solid hosts. J. Mater. Chem. 1991, 1, 705–706.

95

Koski, K. J.; Wessells, C. D.; Reed, B. W.; Cha, J. J.; Kong, D. S.; Cui, Y. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 2012, 134, 13773–13779.

96

Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.

97

Klemm, R. A. Pristine and intercalated transition metal dichalcogenide superconductors. Phys. C: Supercond. Appl. 2015, 514, 86–94.

98

Hossain, M.; Zhao, Z. Y.; Wen, W.; Wang, X. S.; Wu, J. X.; Xie, L. M. Recent advances in two-dimensional materials with charge density waves: Synthesis, characterization and applications. Crystals 2017, 7, 298.

99

Banerjee, A.; Garg, A.; Ghosal, A. Emergent superconductivity upon disordering a charge density wave ground state. Phys. Rev. B 2018, 98, 104206.

100

Lian, C. S.; Si, C.; Wu, J.; Duan, W. First-principles study of Na-intercalated bilayer NbSe2: Suppressed charge-density wave and strain-enhanced superconductivity. Phys. Rev. B 2017, 96, 235426.

101

Wang, X. F.; Shen, X.; Wang, Z. X.; Yu, R. C.; Chen, L. Q. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 2014, 8, 11394–11400.

102

Hui, J. S.; Burgess, M.; Zhang, J. R.; Rodríguez-López, J. Layer number dependence of Li+ intercalation on few-layer graphene and electrochemical imaging of its solid–electrolyte interphase evolution. ACS Nano 2016, 10, 4248–4257.

103

Song, M. K.; Hong, S. D.; No, K. T. The structure of lithium intercalated graphite using an effective atomic charge of lithium. J. Electrochem. Soc. 2001, 148, A1159–A1163.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2018
Revised: 21 March 2019
Accepted: 08 April 2019
Published: 23 April 2019
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

S. Y. is supported by the National Science Foundation Division of Chemical, Bioengineering, Environmental, and Transport Systems (No. 1749742). M. Y. is supported by the Department of Energy (DE-SC0014476). J. J. C. acknowledges support from the Army Research Office (No. 71816-MS).

Return