Journal Home > Volume 12 , Issue 6

After nanocrystals synthesis, the purification process with anti-solvents is an essential step to get clean nanocrystals, which could get rid of the by-products of the synthesis. It is generally recognized that this process could bring a positive effect for the afterward optoelectronic applications. Unfortunately, we found that the optical properties and photostability of perovskite CsPbBr3 nanocrystals were unavoidably deteriorated after they were washed with anti-solvents, and this deterioration is strongly related to the decreasing of surface ligands density. Therefore, in this paper, we tried to purposely not wash the CsPbBr3 nanocrystals solution after adding didodecyl dimethylammonium bromide (DDAB), and found the existing of DDAB in solution could result in a dramatically enhanced photostability. Inspired by these results, we proposed a new strategy to stabilize perovskite nanocrystals from the view of packaging process: adding protective ligands into the perovskite nanocrystals resin directly, then encapsulating them on blue light-emitting diodes (LED) chips. Surprisingly, stable LED devices (20 mA, 2.7V) were achieved by this way, which can keep 80% of the initial photoluminescence (PL) intensity for more than 50 h, while the devices with CsPbBr3 nanocrystals without adding protective ligands into resin dropped to 50% of their initial PL intensity within 6 h. This approach offers a new thought to stabilize perovskite nanocrystals as down-conversion phosphor in quantum dots liquid crystal display.


menu
Abstract
Full text
Outline
About this article

Stabilizing perovskite nanocrystals by controlling protective surface ligands density

Show Author's information Weilin Zheng1Zhichun Li1Congyang Zhang1Bo Wang1Qinggang Zhang1Qun Wan1Long Kong1( )Liang Li1,2( )
School of Environmental Science and Engineering,Shanghai Jiao Tong University, 800 Dongchuan Road,Shanghai,200240,China;
Shanghai Institute of Pollution Control and Ecological Security,Shanghai,200092,China;

Abstract

After nanocrystals synthesis, the purification process with anti-solvents is an essential step to get clean nanocrystals, which could get rid of the by-products of the synthesis. It is generally recognized that this process could bring a positive effect for the afterward optoelectronic applications. Unfortunately, we found that the optical properties and photostability of perovskite CsPbBr3 nanocrystals were unavoidably deteriorated after they were washed with anti-solvents, and this deterioration is strongly related to the decreasing of surface ligands density. Therefore, in this paper, we tried to purposely not wash the CsPbBr3 nanocrystals solution after adding didodecyl dimethylammonium bromide (DDAB), and found the existing of DDAB in solution could result in a dramatically enhanced photostability. Inspired by these results, we proposed a new strategy to stabilize perovskite nanocrystals from the view of packaging process: adding protective ligands into the perovskite nanocrystals resin directly, then encapsulating them on blue light-emitting diodes (LED) chips. Surprisingly, stable LED devices (20 mA, 2.7V) were achieved by this way, which can keep 80% of the initial photoluminescence (PL) intensity for more than 50 h, while the devices with CsPbBr3 nanocrystals without adding protective ligands into resin dropped to 50% of their initial PL intensity within 6 h. This approach offers a new thought to stabilize perovskite nanocrystals as down-conversion phosphor in quantum dots liquid crystal display.

Keywords: perovskite nanocrystals, purification, ligand density, photostability, encapsulation strategy

References(33)

1

Liu, Z. K.; Bekenstein, Y.; Ye, X. C.; Nguyen, S. C.; Swabeck, J.; Zhang, D. D.; Lee, S. T.; Yang P. D.; Ma, W. L.; Alivisatos, A. P. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc. 2017, 139, 5309–5312.

2

Xu, W.; Cai, Z. X.; Li, F. M.; Dong, J.; Wang, Y. R.; Jiang, Y. Q.; Chen, X. Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability. Nano Res. 2017, 10, 2692–2698.

3

Lin, K. B.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245–248.

4

Wang, H. C.; Bao, Z.; Tsai, H. Y.; Tang, A. C.; Liu, R. S. Perovskite quantum dots and their application in light-emitting diodes. Small 2018, 14, 1702433.

5

Yassitepe, E.; Yang, Z. Y.; Voznyy, O.; Kim, Y.; Walters, G.; Castañeda, J. A.; Kanjanaboos, P.; Yuan, M. J.; Gong, X. W.; Fan, F. J. et al. Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2016, 26, 8757–8763.

6

Shang, Y. Q.; Li, G.; Liu, W. M.; Ning, Z. J. Quasi-2D inorganic CsPbBr3 perovskite for efficient and stable light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1801193.

7

Yang, C.; Wu, Y. H.; Ma, Q. S.; Zhang, W. H. Nanocrystals of halide perovskite: Synthesis, properties, and applications. J. Energy Chem. 2018, 27, 622–636.

8

He, X. H.; Qiu, Y. C.; Yang, S. H. Fully-inorganic trihalide perovskite nanocrystals: A new research frontier of optoelectronic materials. Adv. Mater. 2017, 29, 1700775.

9

Zou, S. H.; Liu, Y. S.; Li, J. H.; Liu, C. P.; Feng, R.; Jiang, F. L.; Li, Y. X.; Song, J. Z.; Zeng, H. B.; Hong, M. C. et al. Stabilizing cesium lead halide perovskite lattice through Mn(Ⅱ) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450.

10

Sun, C.; Zhang, Y.; Ruan, C.; Yin, C. Y.; Wang, X. Y.; Wang, Y. D.; Yu, W. W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater. 2016, 28, 10088–10094.

11

Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in "waterless" toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752.

12

Liu, Y.; Li, F.; Liu, Q. L.; Xia, Z. G. Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Chem. Mater. 2018, 30, 6922–6929.

13

Liu, Z. Q.; Zhang, Y. Q.; Fan, Y.; Chen, Z. Q.; Tang, Z. B.; Zhao, J. L.; Lv, Y.; Lin, J.; Guo, X. Y.; Zhang, J. H. et al. Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACS Appl. Mater. Interfaces 2018, 10, 13053–13061.

14

Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D. T. L.; Buonsanti, R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew. Chem. , Int. Ed. 2017, 56, 10696–10701.

15

Wang, B.; Zhang, C. Y.; Huang, S. Q.; Li, Z. C.; Kong, L.; Jin, L.; Wang, J. H.; Wu, K. F.; Li, L. Postsynthesis phase transformation for CsPbBr3/ Rb4PbBr6 core/shell nanocrystals with exceptional photostability. ACS Appl. Mater. Interfaces 2018, 10, 23303–23310.

16

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

17

Krieg, F.; Ochsenbein, S. T.; Yakunin, S.; Ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 2018, 3, 641–646.

18

Cho, J.; Banerjee, S. Ligand-directed stabilization of ternary phases: Synthetic control of structural dimensionality in solution-grown cesium lead bromide nanocrystals. Chem. Mater. 2018, 30, 6144–6155.

19

Lu, C.; Li, H.; Kolodziejski, K.; Dun, C. C.; Huang, W. X.; Carroll, D.; Geyer, S. M. Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 2018, 11, 762–768.

20

Tan, Y. S.; Zou, Y. T.; Wu, L. Z.; Huang, Q.; Yang, D.; Chen, M.; Ban, M. Y.; Wu, C.; Wu, T.; Bai, S. et al. Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 3784–3792.

21

Moyen, E.; Kanwat, A.; Cho, S.; Jun, H.; Aad, R.; Jang, J. Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices. Nanoscale 2018, 10, 8591–8599.

22

Chiba, T.; Hoshi, K.; Pu, Y. J.; Takeda, Y.; Hayashi, Y.; Ohisa, S.; Kawata, S.; Kido, J. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl. Mater. Interfaces 2017, 9, 18054–18060.

23

Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.

24

Li, Z. C.; Kong, L.; Huang, S. Q.; Li, L. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith. Angew. Chem. , Int. Ed. 2017, 129, 8246–8250.

25

Sun, H.; Li, Z. C.; Kong, L.; Wang, B.; Zhang, C. Y.; Yuan, Q. C.; Huang, S. Q.; Liu, Y.; Li, L. Enhancing the stability of CsPbBr3 nanocrystals by sequential surface adsorption of S2- and metal ions. Chem. Commun. 2018, 54, 9345–9348.

26

Pan, J.; Quan, L. N.; Zhao, Y. B.; Peng, W.; Murali, B.; Sarmah, S. P.; Yuan, M. J.; Sinatra, L.; Alyami, N. M.; Liu, J. K. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 2016, 28, 8718–8725.

27

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

28

Zhang, L. X.; Sun, X. P.; Song, Y. H.; Jiang, X. E.; Dong, S. J.; Wang, E. K. Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: Synthesis, characterization, and self-assembly. Langmuir 2006, 22, 2838–2843.

29

Bronstein, L. M.; Huang, X. L.; Retrum, J.; Schmucker, A.; Pink, M.; Stein, B. D.; Dragnea, B. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem. Mater. 2007, 19, 3624–3632.

30

Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem. Res. 2003, 42, 2427–2433.

31

Wu, L. Z.; Zhong, Q. X.; Yang, D.; Chen, M.; Hu, H. C.; Pan, Q.; Liu, H. Y.; Cao, M. H.; Xu, Y.; Sun, B. Q. et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand. Langmuir 2017, 33, 12689–12696.

32

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

33

Pan, A. Z.; Wang, J. L.; Jurow, M. J.; Jia, M. J.; Liu, Y.; Wu, Y. S.; Zhang, Y. F.; He, L.; Liu, Y. General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 peroskite nanocrystals. Chem. Mater. 2018, 30, 2771–2780.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 December 2018
Revised: 15 March 2019
Accepted: 08 April 2019
Published: 29 May 2019
Issue date: June 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is supported by the Major National Science and Technology Special Project of Water Pollution Control and Remediation (No. 2017ZX07202), the National Natural Science Foundation of China (No. 21773155), and Shanghai Sailing Program (No. 19YF1422200).

Return