Journal Home > Volume 12 , Issue 7

The ability to tailor and enhance photoluminescence (PL) behavior in two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS2) is significant for pursuing optoelectronic applications. To achieve this, it has been essential to obtain high-quality single-layer MoS2 and fully explore its intrinsic PL performance. Here, we fabricate single-layer MoS2 by a thermal vapor sulfurization method in which a pre-deposited molybdenum trioxide (MoO3) thin film is sulfurized over a short period (for several minutes) to turn into MoS2. These as-grown MoS2 crystals show quite strong PL, which is about one order of magnitude higher than that of chemical- vapor-deposited MoS2. Temperature- and power-dependent spectroscopy measurements disclose the apparent influence of sulfur (S) vacancies on the PL behavior and the noticeable free-to-bound exciton recombinations in the luminescence process. The fact that PL intensity of the sample in vacuum sharply lowered down relative to in air reveals that the high PL is facilitated by molecular adsorption on S vacancies in air. And multi-channel decay processes coupled with S vacancies are revealed in the time-resolved PL spectroscopy. In our work, single-layer MoS2 with high PL is synthesized and its defect-induced PL features are analyzed, which is of great importance for developing advanced nano-electronics and optoelectronics based on 2D structures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Analysis of photoluminescence behavior of high-quality single-layer MoS2

Show Author's information Lu XuLiyun ZhaoYunsong WangMingchu ZouQing ZhangAnyuan Cao( )
Department of Materials Science and Engineering,College of Engineering, Peking University,Beijing,100871,China;

Abstract

The ability to tailor and enhance photoluminescence (PL) behavior in two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS2) is significant for pursuing optoelectronic applications. To achieve this, it has been essential to obtain high-quality single-layer MoS2 and fully explore its intrinsic PL performance. Here, we fabricate single-layer MoS2 by a thermal vapor sulfurization method in which a pre-deposited molybdenum trioxide (MoO3) thin film is sulfurized over a short period (for several minutes) to turn into MoS2. These as-grown MoS2 crystals show quite strong PL, which is about one order of magnitude higher than that of chemical- vapor-deposited MoS2. Temperature- and power-dependent spectroscopy measurements disclose the apparent influence of sulfur (S) vacancies on the PL behavior and the noticeable free-to-bound exciton recombinations in the luminescence process. The fact that PL intensity of the sample in vacuum sharply lowered down relative to in air reveals that the high PL is facilitated by molecular adsorption on S vacancies in air. And multi-channel decay processes coupled with S vacancies are revealed in the time-resolved PL spectroscopy. In our work, single-layer MoS2 with high PL is synthesized and its defect-induced PL features are analyzed, which is of great importance for developing advanced nano-electronics and optoelectronics based on 2D structures.

Keywords: MoS2, photoluminescence, thermal vapor sulfurization, S vacancy

References(32)

1

Xia, M.; Li, B.; Yin, K. B.; Capellini, G.; Niu, G.; Gong, Y. J.; Zhou, W.; Ajayan, P. M.; Xie, Y. H. Spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS2. ACS Nano 2015, 9, 12246-12254.

2

Kim, I. S.; Sangwan, V. K.; Jariwala, D.; Wood, J. D.; Park, S.; Chen, K. S.; Shi, F. Y.; Ruiz-Zepeda, F.; Ponce, A.; Jose-Yacaman, M. et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 2014, 8, 10551-10558.

3

Ceballos, F.; Bellus, M.Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der waals heterostructure. ACS Nano 2014, 8, 12717-12724.

4

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. Atomically thin MoS2: A new direct-gap semiconductor. Phy. Rev. Lett. 2010, 105, 136805.

5

Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590-5597.

6

Galfsky, T.; Sun, Z.; Considine, C. R.; Chou, C. T.; Ko, W. C.; Narimanov, E. E.; Menon, V. M. Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals. Nano Lett. 2016, 16, 4940-4945.

7

Wan, Y.; Zhang, H.; Wang, W.; Sheng, B. W.; Zhang, K.; Wang, Y. L.; Song, Q. J.; Mao, N. N.; Li, Y. P.; Wang, X. et al. Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate. Small 2016, 12, 198-203.

8

Joo, P.; Jo, K.; Ahn, G.; Voiry, D.; Jeong, H. Y.; Ryu, S.; Chhowalla, M.; Kim, B. S. Functional polyelectrolyte nanospaced MoS2 multilayers for enhanced photoluminescence. Nano Lett. 2014, 14, 6456-6462.

9

Yu, Y. F.; Yu, Y. L.; Xu, C.; Cai, Y. Q.; Su, L. Q.; Zhang, Y.; Zhang, Y. W.; Gundogdu, K.; Cao, L. Y. Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv. Funct. Mater. 2016, 26, 4733-4739.

10

Li, Z. W.; Li, Y.; Han, T. Y.; Wang, X. L.; Yu, Y.; Tay, B.; Liu, Z.; Fang, Z. Y. Tailoring MoS2 exciton-plasmon interaction by optical spin-orbit coupling. ACS Nano 2017, 11, 1165-1171.

11

Amani, M.; Burke, R. A.; Ji, X.; Zhao, P. D.; Lien, D. H.; Taheri, P.; Ahn, G. H.; Kirya, D.; Ager, III J. W.; Yablonovitch, E. et al. High luminescence efficiency in MoS2 grown by chemical vapor deposition. ACS Nano 2016, 10, 6535-6541.

12

Li, Z. W.; Ye, R. Q.; Ye, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 2015, 27, 5235-5240.

13

Kwon, K. C.; Choi, S.; Hong, K.; Moon, C. W.; Jang, D. H.; Kim, T.; Sohn, W.; Jeon, J. M.; Lee, J. M.; Nam, K. T. et al. Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ. Sci. 2016, 9, 2240-2248.

14

Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668-673.

15

Zhang, G. Z.; Wang, J. W.; Wu, Z. F.; Ouyang, W. K.; Amini, A.; Chandrashekar, B. N.; Wang, N.; Cheng, C. Shape-dependent defect structures of monolayer MoS2 crystals grown by chemical vapor deposition. ACS Appl. Mater. Interfaces 2017, 9, 763-770.

16

Zafar, A.; Nan, H. Y.; Zafar, Z.; Wu, Z. T.; Jiang, J.; You, Y. M.; Ni, Z. H. Probing the intrinsic optical quality of CVD grown MoS2. Nano Res. 2017, 10, 1608-1617.

17

Ji, Q. Q.; Zhang, Y.; Zhang, Y. F.; Liu, Z. F. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 2015, 44, 2587-2602.

18

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.

19

Lee, C.; Yuan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

20

Jadczak, J.; Kutrowska-Girzycka, J.; Kapuściński, P.; Huang, Y. S.; Wójs, A.; Bryja, L. Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology, 2017, 28, 395702.

21

Carozo, V.; Wang, Y. X.; Fujisawa, K.; Carvalho, B. R.; McCreary, A.; Feng, S.; Lin, Z.; Zhou, C.; Perea-López, N.; Elías, A. L. et al. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv. 2017, 3, e1602813.

22

Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149-154.

23

Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339-345.

24

Sun, L. F.; Zhang, X. M.; Liu, F. C.; Shen, Y. D.; Fan, X. F.; Zheng, S. J.; Thong, J. T. L.; Liu, Z.; Yang, S. A.; Yang, H. Y. Vacuum level dependent photoluminescence in chemical vapor deposition-grown monolayer MoS2. Sci. Rep. 2017, 7, 16714.

25

Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phy. Rev. B 1992, 45, 8989-8994.

26

Senthilkumar, V.; Tam, L. C.; Kim, Y. S.; Sim, Y.; Seong, M. J.; Jang, J. I. Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers. Nano Res. 2014, 7, 1759-1768.

27

Ganta, D.; Sinha, S.; Haasch, R. T. 2D material molybdenum disulfide analyzed by XPS. Surf. Sci. Spectra 2014, 21, 19.

28

Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072-1080.

29

Sim, S.; Park, J.; Song, J. G.; In, C.; Lee, Y. S.; Kim, H.; Choi, H. Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics. Phy. Rev. B 2013, 88, 075434.

30

Wang, H. N.; Zhang, C. J.; Rana, F. Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett. 2015, 15, 8204-8210.

31

Wang, H. N.; Zhang, C. J.; Chan, W. M.; Manolatou, C.; Tiwari, S.; Rana, F. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2. Phy. Rev. B 2016, 93, 045407.

32

Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phy. Rev. B 2016, 93, 205423.

File
12274_2019_2401_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright

Publication history

Received: 28 November 2018
Revised: 03 March 2019
Accepted: 14 March 2019
Published: 25 April 2019
Issue date: July 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return