Journal Home > Volume 12 , Issue 7

Cd-free I-III-VI group semiconductor quantum dots (QDs) like Ag-In-S and Cu-In-S show unstructured absorption spectra with a pronounced Urbach tail, rendering the determination of their band gap energy (Eg) and the energy structure of the exciton difficult. Additionally, the origin of the broad photoluminescence (PL) band with lifetimes of several hundred nanoseconds is still debated. This encouraged us to study the excitation energy dependence (EED) of the PL maxima, PL spectral band widths, quantum yields (QYs), and decay kinetics of AIS/ZnS QDs of different size, composition, and surface capping ligands. These results were then correlated with the second derivatives of the corresponding absorption spectra. The excellent match between the onset of changes in PL band position and spectral width with the minima found for the second derivatives of the absorption spectra underlines the potential of the EED approach for deriving Eg values of these ternary QDs from PL data. The PL QY is, however, independent of excitation energy in the energy range studied. From the EED of the PL features of the AIS/ZnS QDs we could also derive a mechanism of the formation of the low-energy electronic structure. This was additionally confirmed by a comparison of the EED of PL data of as-synthesized and size-selected QD ensembles and the comparison of these PL data with PL spectra of single QDs. These results indicate a strong contribution of intrinsic inhomogeneous PL broadening to the overall emission features of AIS/ZnS QDs originating from radiative transitions from a set of energy states of defects localized at different positions within the quantum dot volume, in addition to contributions from dimensional and chemical broadening. This mechanism was confirmed by numerically modelling the absorption and PL energies with a simple mass approximation for spherical QDs and a modified donor-acceptor model, thereby utilizing the advantages of previously proposed PL mechanisms of ternary QDs. These findings will pave the road to a deeper understanding of the nature of PL in quantum confined I-III-VI group semiconductor nanomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Photoluminescence of Ag–In–S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure

Show Author's information Irina V. Martynenko1( )Anvar S. Baimuratov2Florian Weigert1José X. Soares3Lorena Dhamo1Philip Nickl1Ilona Doerfel1Jutta Pauli1Ivan D. Rukhlenko2,4Alexander V. Baranov2( )Ute Resch-Genger1( )
Federal Institute for Materials Research and Testing (BAM),Unter den Eichen 87,12205,Berlin, Germany;
ITMO University,49 Kronverksky Pr., St. Petersburg,,197101,Russia;
,University of Porto,Rua de Jorge Viterbo Ferreira, 228,4050-313,Porto, Portugal;
Institute of Photonics and Optical Sciences (IPOS), School of Physics,The University of Sydney,Camperdown,2006,NSW, Australia;

Abstract

Cd-free I-III-VI group semiconductor quantum dots (QDs) like Ag-In-S and Cu-In-S show unstructured absorption spectra with a pronounced Urbach tail, rendering the determination of their band gap energy (Eg) and the energy structure of the exciton difficult. Additionally, the origin of the broad photoluminescence (PL) band with lifetimes of several hundred nanoseconds is still debated. This encouraged us to study the excitation energy dependence (EED) of the PL maxima, PL spectral band widths, quantum yields (QYs), and decay kinetics of AIS/ZnS QDs of different size, composition, and surface capping ligands. These results were then correlated with the second derivatives of the corresponding absorption spectra. The excellent match between the onset of changes in PL band position and spectral width with the minima found for the second derivatives of the absorption spectra underlines the potential of the EED approach for deriving Eg values of these ternary QDs from PL data. The PL QY is, however, independent of excitation energy in the energy range studied. From the EED of the PL features of the AIS/ZnS QDs we could also derive a mechanism of the formation of the low-energy electronic structure. This was additionally confirmed by a comparison of the EED of PL data of as-synthesized and size-selected QD ensembles and the comparison of these PL data with PL spectra of single QDs. These results indicate a strong contribution of intrinsic inhomogeneous PL broadening to the overall emission features of AIS/ZnS QDs originating from radiative transitions from a set of energy states of defects localized at different positions within the quantum dot volume, in addition to contributions from dimensional and chemical broadening. This mechanism was confirmed by numerically modelling the absorption and PL energies with a simple mass approximation for spherical QDs and a modified donor-acceptor model, thereby utilizing the advantages of previously proposed PL mechanisms of ternary QDs. These findings will pave the road to a deeper understanding of the nature of PL in quantum confined I-III-VI group semiconductor nanomaterials.

Keywords: core/shell quantum dot, silver indium sulfide, defect photoluminescence, photoluminescence quantum yield, single-dot spectroscopy

References(58)

1

Girma, W. M.; Fahmi, M. Z.; Permadi, A.; Abate, M. A.; Chang, J. Y. Synthetic strategies and biomedical applications of I-Ⅲ-VI ternary quantum dots. J. Mater. Chem. B 2017, 5, 6193-6216.

2

Coughlan, C.; Ibáñez, M.; Dobrozhan, O.; Singh, A.; Cabot, A.; Ryan, K. M. Compound copper chalcogenide nanocrystals. Chem. Rev. 2017, 117, 5865-6109.

3

Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuinS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221-12237.

4

Torimoto, T.; Kameyama, T.; Kuwabata, S. Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions. J. Phys. Chem. Lett. 2014, 5, 336-347.

5

Thomas, S. R.; Chen, C. W.; Date, M.; Wang, Y. C.; Tsai, H. W.; Wang, Z. M.; Chueh, Y. L. Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: A review. RSC Adv. 2016, 6, 60643-60656.

6

Xu, G. X.; Zeng, S. W.; Zhang, B. T.; Swihart, M. T.; Yong, K. T.; Prasad, P. N. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem. Rev. 2016, 116, 12234-12327.

7

Bai, X.; Purcell-Milton, F.; Gun'ko, Y. K. Optical properties, synthesis, and potential applications of Cu-based ternary or quaternary anisotropic quantum dots, polytypic nanocrystals, and core/shell heterostructures. Nanomaterials 2019, 9, 85.

8

Nagamine, G.; Nunciaroni, H. B.; McDaniel, H.; Efros, A. L.; de Brito Cruz, C. H.; Padilha, L. A. Evidence of band-edge hole levels inversion in spherical CuInS2 quantum dots. Nano Lett. 2018, 18, 6353-6359.

9

Mansur, A. A. P.; Mansur, H. S.; Tabare, C.; Paiva, A.; Capanema, N. S. V. Eco-friendly AgInS2/ZnS quantum dot nanohybrids with tunable luminescent properties modulated by pH-sensitive biopolymer for potential solar energy harvesting applications. J. Mater. Sci. : Mater. Electron. 2019, doi: 10.1007/s10854-019-00719-0.

10

Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513-10622.

11

Martynenko, I. V.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Berwick, K.; Baranov, A. V. The influence of phthalocyanine aggregation in complexes with CdSe/ZnS quantum dots on the photophysical properties of the complexes. Beilstein J. Nanotechnol. 2016, 7, 1018-1027.

12

Visheratina, A. K.; Martynenko, I. V.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Baranov, A. V.; Gun'ko, Y. K. Investigation of biocompatible complexes of Mn2+-doped ZnS quantum dots with chlorin e6. J. Opt. Technol. 2014, 81, 444-448.

13

Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Y. K.; Baranov, A. V. Enantioselective cellular uptake of chiral semiconductor nanocrystals. Nanotechnology 2016, 27, 075102.

14

Regulacio, M. D.; Win, K. Y.; Lo, S. L.; Zhang, S. Y.; Zhang, X. H.; Wang, S.; Han, M. Y.; Zheng, Y. G. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale 2013, 5, 2322-2327.

15

Luo, Z. S.; Zhang, H.; Huang, J.; Zhong, X. H. One-step synthesis of water-soluble AgInS2 and ZnS-AgInS2 composite nanocrystals and their photocatalytic activities. J. Colloid Interface Sci. 2012, 377, 27-33.

16

Raevskaya, A.; Lesnyak, V.; Haubold, D.; Dzhagan, V.; Stroyuk, O.; Gaponik, N.; Zahn, D. R. T.; Eychmüller, A. A fine size selection of brightly luminescent water-soluble Ag-In-S and Ag-In-S/ZnS quantum dots. J. Phys. Chem. C 2017, 121, 9032-9042.

17

Regulacio, M. D.; Han, M. Y. Multinary I-Ⅲ-VI2 and I2-Ⅱ-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016, 49, 511-519.

18

Litvin, A. P.; Martynenko, I. V.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun'ko, Y. K. Colloidal quantum dots for optoelectronics. J. Mater. Chem. A 2017, 5, 13252-13275.

19

Martynenko, I. V.; Litvin, A. P.; Purcell-Milton, F.; Baranov, A. V.; Fedorov, A. V.; Gun'ko, Y. K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 2017, 5, 6701-6727.

20

Stroyuk, O.; Raevskaya, A.; Spranger, F.; Selyshchev, O.; Dzhagan, V.; Schulze, S.; Zahn, D. R. T.; Eychmüller, A. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots. J. Phys. Chem. C 2018, 122, 13648- 13658.

21

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854-2860.

22

Kadlag, K. P.; Patil, P.; Jagadeeswara Rao, M.; Datta, S.; Nag, A. Luminescence and solar cell from ligand-free colloidal AgInS2 nanocrystals. CrystEngComm 2014, 16, 3605-3612.

23

Cichy, B.; Rich, R.; Olejniczak, A.; Gryczynski, Z.; Strek, W. Two blinking mechanisms in highly confined AgInS2 and AgInS2/ZnS quantum dots evaluated by single particle spectroscopy. Nanoscale 2016, 8, 4151-4159.

24

Torimoto, T.; Tada, M.; Dai, M. L.; Kameyama, T.; Suzuki, S.; Kuwabata, S. Tunable photoelectrochemical properties of chalcopyrite AgInS2 nanoparticles size-controlled with a photoetching technique. J. Phys. Chem. C 2012, 116, 21895-21902.

25

Jeong, S.; Yoon, H. C.; Han, N. S.; Oh, J. H.; Park, S. M.; Min, B. K.; Do, Y. R.; Song, J. K. band-gap states of AgIn5S8 and ZnS-AgIn5S8 nanoparticles. J. Phys. Chem. C 2017, 121, 3149-3155.

26

Mao, B. D.; Chuang, C. H.; McCleese, C.; Zhu, J. J.; Burda, C. Near-infrared emitting AgInS2/ZnS nanocrystals. J. Phys. Chem. C 2014, 118, 13883- 13889.

27

Yarema, M.; Pichler, S.; Sytnyk, M.; Seyrkammer, R.; Lechner, R. T.; Fritz-Popovski, G.; Jarzab, D.; Szendrei, K.; Resel, R.; Korovyanko, O. et al. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 2011, 5, 3758-3765.

28

Huxter, V. M.; Mirkovic, T.; Nair, P. S.; Scholes, G. D. Demonstration of bulk semiconductor optical properties in processable Ag2S and EuS nanocrystalline systems. Adv. Mater. 2008, 20, 2439-2443.

29

Song, J.; Ma, C.; Zhang, W. Z.; Li, X. D.; Zhang, W. T.; Wu, R. B.; Cheng, X. C.; Ali, A.; Yang, M. Y.; Zhu, L. X. et al. Bandgap and structure engineering via cation exchange: From binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging. ACS Appl. Mater. Interfaces 2016, 8, 24826- 24836.

30

Leach, A. D. P.; Macdonald, J. E. Optoelectronic properties of CuInS2 nanocrystals and their origin. J. Phys. Chem. Lett. 2016, 7, 572-583.

31

Hamanaka, Y.; Ogawa, T.; Tsuzuki, M.; Kuzuya, T. Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. J. Phys. Chem. C 2011, 115, 1786-1792.

32

Sun, J. H.; Ikezawa, M.; Wang, X. Y.; Jing, P. T.; Li, H. B.; Zhao, J. L.; Masumoto, Y. Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots. Phys. Chem. Chem. Phys. 2015, 17, 11981-11989.

33

Whitham, P. J.; Marchioro, A.; Knowles, K. E.; Kilburn, T. B.; Reid, P. J.; Gamelin, D. R. Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals. J. Phys. Chem. C 2016, 120, 17136-17142.

34

Fuhr, A. S.; Yun, H. J.; Makarov, N. S.; Li, H. B.; McDaniel, H.; Klimov, V. I. Light emission mechanisms in CuInS2 quantum dots evaluated by spectral electrochemistry. ACS Photonics 2017, 4, 2425-2435.

35

Pinchetti, V.; Lorenzon, M.; McDaniel, H.; Lorenzi, R.; Meinardi, F.; Klimov, V. I.; Brovelli, S. Spectro-electrochemical probing of intrinsic and extrinsic processes in exciton recombination in I-Ⅲ-VI2 nanocrystals. Nano Lett. 2017, 17, 4508-4517.

36

Zang, H. D.; Li, H. B.; Makarov, N. S.; Velizhanin, K. A.; Wu, K. F.; Park, Y. S.; Klimov, V. I. Thick-shell CuInS2/ZnS quantum dots with suppressed "Blinking" and narrow single-particle emission line widths. Nano Lett. 2017, 17, 1787-1795.

37

Hamanaka, Y.; Ozawa, K.; Kuzuya, T. Enhancement of donor-acceptor pair emissions in colloidal AgInS2 quantum dots with high concentrations of defects. J. Phys. Chem. C 2014, 118, 14562-14568.

38

Chevallier, T.; Benayad, A.; Le Blevennec, G.; Chandezon, F. Method to determine radiative and non-radiative defects applied to AgInS2-ZnS luminescent nanocrystals. Phys. Chem. Chem. Phys. 2017, 19, 2359-2363.

39

Hattori, K.; Akamatsu, K.; Kamegashira, N. Electrical properties of polycrystalline chalcopyrite AgInS2 films. J. Appl. Phys. 1992, 71, 3414-3418.

40

You, S. H.; Hong, K. J.; Youn, C. J.; Jeong, T. S.; Moon, J. D.; Kim, H. S.; Park, J. S. Origin of point defects in AgInS2/GaAs epilayer obtained from photoluminescence measurement. J. Appl. Phys. 2001, 90, 3894-3898.

41

Dai, M. L.; Ogawa, S.; Kameyama, T.; Okazaki, K. I.; Kudo, A.; Kuwabata, S.; Tsuboi, Y.; Torimoto, T. Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles. J. Mater. Chem. 2012, 22, 12851-12858.

42

Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1−x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126, 13406-13413.

43

Mao, B.; Chuang, C. H.; Wang, J.; Burda, C. Synthesis and photophysical properties of ternary I-Ⅲ-VI AgInS2 nanocrystals: Intrinsic versus surface states. J. Phys. Chem. C 2011, 115, 8945-8954.

44

Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat. Protoc. 2013, 8, 1535-1550.

45

Resch-Genger, U.; DeRose, P. C. Characterization of photoluminescence measuring systems (IUPAC Technical Report). Pure Appl. Chem., 2012, 84, 1815-1835.

46

Park, Y. J.; Oh, J. H.; Han, N. S.; Yoon, H. C.; Park, S. M.; Do, Y. R.; Song, J. K. Photoluminescence of band gap states in AgInS2 nanoparticles. J. Phys. Chem. C 2014, 118, 25677-25683.

47

Martynenko, I. V.; Baimuratov, A. S.; Osipova, V. A.; Kuznetsova, V. A.; Purcell-Milton, F.; Rukhlenko, I. D.; Fedorov, A. V.; Gun'ko, Y. K.; Resch-Genger, U.; Baranov, A. V. Excitation energy dependence of the photoluminescence quantum yield of core/shell CdSe/CdS quantum dots and correlation with circular dichroism. Chem. Mater. 2018, 30, 465-471.

48

Hoy, J.; Morrison, P. J.; Steinberg, L. K.; Buhro, W. E.; Loomis, R. A. Excitation energy dependence of the photoluminescence quantum yields of core and core/shell quantum dots. J. Phys. Chem. Lett. 2013, 4, 2053-2060.

49

von Borczyskowski, C.; Zenkevich, E. Tuning Semiconducting and Metallic Quantum Dots: Spectroscopy and Dynamics; Jenny Stanford Publishing: New York, 2016.

50

Flagan, R. C. Continuous-flow differential mobility analysis of nanoparticles and biomolecules. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 255-279.

51

Guha, S.; Li, M. D.; Tarlov, M. J.; Zachariah, M. R. Electrospray-differential mobility analysis of bionanoparticles. Trends Biotechnol. 2012, 30, 291-300.

52

Stroyuk, O.; Weigert, F.; Raevskaya, A.; Spranger, F.; Würth, C.; Resch-Genger, U.; Gaponik, N.; Zahn, D. R. T. Inherently broadband photoluminescence in Ag-In-S/ZnS quantum dots observed in ensemble and single-particle studies. J. Phys. Chem. C 2019, 123, 2632-2641.

53

Knowles, K. E.; Nelson, H. D.; Kilburn, T. B.; Gamelin, D. R. Singlet- triplet splittings in the luminescent excited states of colloidal Cu+: CdSe, Cu+: InP, and CuInS2 nanocrystals: Charge-transfer configurations and self-trapped excitons. J. Am. Chem. Soc. 2015, 137, 13138-13147.

54

van der Stam, W.; Berends, A. C.; de Mello Donega, C. Prospects of colloidal copper chalcogenide nanocrystals. ChemPhysChem 2016, 17, 559-581.

55

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403-4409.

56

Padilha, L. A.; Bae, W. K.; Klimov, V. I.; Pietryga, J. M.; Schaller, R. D. Response of semiconductor nanocrystals to extremely energetic excitation. Nano Lett. 2013, 13, 925-932.

57

Baimuratov, A. S.; Rukhlenko, I. D.; Turkov, V. K.; Ponomareva, I. O.; Leonov, M. Y.; Perova, T. S.; Berwick, K.; Baranov, A. V.; Fedorov, A. V. Level anticrossing of impurity states in semiconductor nanocrystals. Sci. Rep. 2014, 4, 6917.

58

Li, B.; Brosseau, P. J.; Strandell, D. P.; Mack, T. G.; Kambhampati, P. Photophysical action spectra of emission from semiconductor nanocrystals reveal violations to the vavilov rule behavior from hot carrier effects. J. Phys. Chem. C 2019, 123, 5092-5098.

File
12274_2019_2398_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 February 2019
Revised: 29 March 2019
Accepted: 01 April 2019
Published: 22 April 2019
Issue date: July 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

U. Resch-Genger gratefully acknowledges financial support from the grants RE1203/17-1 (M-Eranet project ICENAP; financial support of F. Weigert) and RE1203/12-3 (financial support of L. Dhamo) from the German Research Council (DFG). A. Baimuratov, I. Rukhlenko and A. Baranov gratefully acknowledge support from the Federal Target Program for Research and Development of the Ministry of Science and Higher Education of the Russian Federation (No. 14.587.21.0047, project identifier RFMEFI58718X0047). I. Martynenko acknowledges support from an Adolf-Martens fellowship granted by BAM. The authors gratefully acknowledge fruitful discussions with J. Santos, University of Porto and performance of first DMA measurements by A. Schmidt, BAM (Division 4.2).

Return