Journal Home > Volume 12 , Issue 7

As an essential component of flexible optoelectronic devices, transparent conductive films made of silver nanowire (AgNW) have attracted wide attention due to the extraordinary optical, electrical and mechanical properties. However, the application of AgNW coating still faces some challenges to be overcome including large contact resistance and poor durability. Here, we induce insulating graphene oxide over silver nanowire network through solution process to modify the electrical property and provide a protective layer. Strong interaction with substrates reducing the contact resistance of AgNW junctions and extra conductive channels of graphene oxide sheets contributes to the dramatic enhancement in electric property as well as durability. The resulting coating exhibits superior and uniform optoelectronic performances (sheet resistance of ∼ 38 Ω·sq-1 with 91% transmittance at 550 nm), outstanding stability in harsh environments, strong adhesion, and excellent mechanical flexibility after 3, 000 bending cycles at a bending radius of 2.0 mm, which imply the promising application prospects in flexible optoelectronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Can insulating graphene oxide contribute the enhanced conductivity and durability of silver nanowire coating?

Show Author's information Feng Duan1,2,§Weiwei Li1,§Guorui Wang1Chuanxin Weng1,2Hao Jin1Hui Zhang1( )Zhong Zhang1( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology,Beijing,100190,China;
University of Chinese Academy of Sciences,Beijing,100149,China;

§ Feng Duan and Weiwei Li contributed equally to this work.

Abstract

As an essential component of flexible optoelectronic devices, transparent conductive films made of silver nanowire (AgNW) have attracted wide attention due to the extraordinary optical, electrical and mechanical properties. However, the application of AgNW coating still faces some challenges to be overcome including large contact resistance and poor durability. Here, we induce insulating graphene oxide over silver nanowire network through solution process to modify the electrical property and provide a protective layer. Strong interaction with substrates reducing the contact resistance of AgNW junctions and extra conductive channels of graphene oxide sheets contributes to the dramatic enhancement in electric property as well as durability. The resulting coating exhibits superior and uniform optoelectronic performances (sheet resistance of ∼ 38 Ω·sq-1 with 91% transmittance at 550 nm), outstanding stability in harsh environments, strong adhesion, and excellent mechanical flexibility after 3, 000 bending cycles at a bending radius of 2.0 mm, which imply the promising application prospects in flexible optoelectronics.

Keywords: durability, graphene oxide, flexible electronics, silver nanowires, transparent electrodes

References(50)

1

Chu, H. C.; Chang, Y. C.; Lin, Y.; Chang, S. H.; Chang, W. C.; Li, G. A.; Tuan, H. Y. Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications. ACS Appl. Mater. Interfaces 2016, 8, 13009-13017.

2

Lee, J. W.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. S.; Lee, D.; Ko, S. H. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 2013, 23, 4171-4176.

3

Liu, Z. K.; Li, J. H.; Yan, F. Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 2013, 25, 4296-4301.

4

Ok, K. H.; Kim, J.; Park, S. R.; Kim, Y.; Lee, C. J.; Hong, S. J.; Kwak, M. G.; Kim, N.; Han, C. J.; Kim, J. W. Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes. Sci. Rep. 2015, 5, 9464

5

Tahar, R. B. H.; Ban, T.; Ohya, Y.; Takahashi, Y. Tin doped indium oxide thin films: Electrical properties. J. Appl. Phys. 1998, 83, 2631-2645.

6

Ederth, J.; Johnsson, P.; Niklasson, G. A.; Hoel, A.; Hultåker, A.; Heszler, P.; Granqvist, C. G.; van Doorn, A. R.; Jongerius, M. J.; Burgard, D. Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles. Phys. Rev. B 2003, 68, 155410.

7

Kumar, A.; Zhou, C. W. The race to replace tin-doped indium oxide: Which material will win? ACS Nano 2010, 4, 11-14.

8

Vosgueritchian, M.; Lipomi, D. J.; Bao, Z. N. Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 2012, 22, 421-428.

9

Kim, S.; Sanyoto, B.; Park, W. T.; Kim, S.; Mandal, S.; Lim, J. C.; Noh, Y. Y.; Kim, J. H. Purification of PEDOT: PSS by ultrafiltration for highly conductive transparent electrode of all-printed organic devices. Adv. Mater. 2016, 28, 10149-10154.

10

Sun, K.; Li, P. C.; Xia, Y. J.; Chang, J. J.; Ouyang, J. Y. Transparent conductive oxide-free perovskite solar cells with PEDOT: PSS as transparent electrode. ACS Appl. Mater. Interfaces 2015, 7, 15314-15320.

11

Jeon, I.; Chiba, T.; Delacou, C.; Guo, Y. L.; Kaskela, A.; Reynaud, O.; Kauppinen, E. I.; Maruyama, S.; Matsuo, Y. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: Investigation of electron-blocking layers and dopants. Nano Lett. 2015, 15, 6665-6671.

12

Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105-110.

13

Liu, Z. K.; You, P.; Xie, C.; Tang, G. Q.; Yan, F. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 2016, 28, 151-157.

14

Sung, H.; Ahn, N.; Jang, M. S.; Lee, J. K.; Yoon, H.; Park, N. G.; Choi, M. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 2016, 6, 1501873.

15

Petridis, C.; Konios, D.; Stylianakis, M. M.; Kakavelakis, G.; Sygletou, M.; Savva, K.; Tzourmpakis, P.; Krassas, M.; Vaenas, N.; Stratakis, E. et al. Solution processed reduced graphene oxide electrodes for organic photovoltaics. Nanoscale Horiz. 2016, 1, 375-382.

16

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955-2963.

17

Fang, Y. S.; Wu, Z. C.; Li, J.; Jiang, F. Y.; Zhang, K.; Zhang, Y. L.; Zhou, Y. H.; Zhou, J.; Hu, B. High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater. 2018, 28, 1705409.

18

Teymouri, A.; Pillai, S.; Ouyang, Z.; Hao, X. J.; Liu, F. Y.; Yan, C.; Green, M. A. Low-temperature solution processed random silver nanowire as a promising replacement for indium tin oxide. ACS Appl. Mater. Interfaces 2017, 9, 34093-34100.

19

Nian, Q.; Saei, M.; Xu, Y.; Sabyasachi, G.; Deng, B. W; Chen, Y. P.; Cheng, G. J. Crystalline nanojoining silver nanowire percolated networks on flexible substrate. ACS Nano 2015, 9, 10018-10031.

20

Park, J. H.; Hwang, G. T.; Kim, S.; Seo, J.; Park, H. J.; Yu, K.; Kim, T. S.; Lee, K. J. Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 2017, 29, 1603473.

21

Park, J. W.; Shin, D. K.; Ahn, J.; Lee, J. Y. Thermal property of transparent silver nanowire films. Semicond. Sci. Technol. 2014, 29, 015002.

22

Chen, T. L.; Ghosh, D. S.; Mkhitaryan, V.; Pruneri, V. Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh. ACS Appl. Mater. Interfaces 2013, 5, 11756- 11761.

23

Seo, J. H.; Hwang, I.; Um, H. D.; Lee, S.; Lee, K.; Park, J.; Shin, H.; Kwon, T. H.; Kang, S. J.; Seo, K. Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes. Adv. Mater. 2017, 29, 1701479.

24

Kim, A.; Won, Y.; Woo, K.; Jeong, S.; Moon, J. All-solution-processed indium-free transparent composite electrodes based on Ag nanowire and metal oxide for thin-film solar cells. Adv. Funct. Mater. 2014, 24, 2462-2471.

25

Chen, D.; Liang, J.J.; Liu, C.; Saldanha, G.; Zhao, F. C.; Tong, K.; Liu, J.; Pei, Q. B. Thermally stable silver nanowire-polyimide transparent electrode based on atomic layer deposition of zinc oxide on silver nanowires. Adv. Funct. Mater. 2015, 25, 7512-7520.

26

Khan, A.; Nguyen, V. H.; Muñoz-Rojas, D.; Aghazadehchors, S.; Jiménez, C.; Nguyen, N. D.; Bellet, D. Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl. Mater. Interfaces 2018, 10, 19208-19217.

27

Kim, Y.; Ryu, T. I.; Ok, K. H.; Kwak, M. G.; Park, S.; Park, N. G.; Han, C. J.; Kim, B. S.; Ko, M. J.; Son, H. J. et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 2015, 25, 4580-4589.

28

Jin, Y. X.; Li, L.; Cheng, Y. R.; Kong, L. Q.; Pei, Q. B.; Xiao, F. Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer sol-gel transition. Adv. Funct. Mater. 2015, 25, 1581-1587.

29

Xiong, W. W.; Liu, H. L.; Chen, Y. Z.; Zheng, M. L.; Zhao, Y. Y.; Kong, X. B.; Wang, Y.; Zhang, X. Q.; Kong, X. Y.; Wang, P. F. et al. Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes. Adv. Mater. 2016, 28, 7167-7172.

30

Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20-27.

31

Chen, R. Y.; Das, S. R.; Jeong, C.; Khan, M. R.; Janes, D. B.; Alam, M. A. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv. Funct. Mater. 2013, 23, 5150-5158.

32

Choi, H. O.; Kim, D. W.; Kim, S. J.; Cho, K. M.; Jung, H. T. Combining the silver nanowire bridging effect with chemical doping for highly improved conductivity of CVD-grown graphene films. J. Mater. Chem. C 2014, 2, 5902-5909.

33

Hwang, B.; Park, M.; Kim, T.; Han, S. M. Effect of RGO deposition on chemical and mechanical reliability of Ag nanowire flexible transparent electrode. RSC Adv. 2016, 6, 67389-67395.

34

Zhang, X. Q.; Wu, J.; Liu, H.; Wang, J. T.; Zhao, X. F.; Xie, Z. Y. Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide-assisted silver nanowire transparent electrode. Org. Electron. 2017, 50, 255-263.

35

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270-274.

36

Pei, S. F.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50, 3210-3228.

37

Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557-6564.

38

Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Correction: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 5226.

39

Moon, I. K.; Kim, J. I.; Lee, H.; Hur, K.; Kim, W. C.; Lee, H. 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci. Rep. 2013, 3, 1112.

40

Liang, J. J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X. F.; Chen, Y. S.; Pei, Q. B. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014, 8, 1590-1600.

41

Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165-168.

42

Sun, Y. G. Silver nanowires—Unique templates for functional nanostructures. Nanoscale 2010, 2, 1626-1642.

43

Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 2003, 3, 955-960.

44

Gao, Y.; Liu, L. Q.; Zu, S. Z.; Peng, K.; Zhou, D.; Han, B. H.; Zhang, Z. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers. ACS Nano 2011, 5, 2134-2141.

45

Krantz, J.; Stubhan, T.; Richter, M.; Spallek, S.; Litzov, I.; Matt, G. J.; Spiecker, E.; Brabec, C. J. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT: PCBM-based organic solar cell devices. Adv. Funct. Mater. 2013, 23, 1711-1717.

46

Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577-2583.

47

Eda, G.; Chhowalla, M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Adv. Mater. 2010, 22, 2392-2415.

48

Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 2012, 6, 809-817.

49

Lee, H.; Kim, M.; Kim, I.; Lee, H. Flexible and stretchable optoelectronic devices using silver nanowires and graphene. Adv. Mater. 2016, 28, 4541-4548.

50

Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. : R: Rep. 2002, 37, 129-281.

File
12274_2019_2394_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 January 2019
Revised: 19 March 2019
Accepted: 28 March 2019
Published: 16 April 2019
Issue date: July 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The work is financially supported by the National Natural Science Foundation of China (Nos. 11890682, 11832010 and 51861165103).

Return