Journal Home > Volume 12 , Issue 9

Nickel-, cobalt-, and iron-based (oxy)hydroxides comprise the most-commonly studied electrocatalysts for the oxygen-evolution reaction (OER) in alkaline solution. A fundamental understanding of composition-structure-activity relationships for mixed-metal Ni-Co and Ni-Co-Fe (oxy)hydroxides is important to guide the design of advanced OER catalysts. Here we use cyclic voltammetry, chronopotentiometry, inductively-coupled plasma-optical emission spectroscopy, and in situ electrical conductivity measurements to characterize the properties and activity of various compositions of Ni-Co-Fe (oxy)hydroxides prepared by cathodic co-electrodeposition. Consistent with previous studies, we find Fe is essential for the mixed-metal (oxy)hydroxides to achieve high OER activity. In the rigorous absence of Fe (achieved by using specially cleaned electrolytes), the most-active Ni-Co (oxy)hydroxide composition has an OER turn-over frequency only twice that of pure Co (oxy)hydroxide, suggesting minimal synergism between the two metals. The addition of Co to Ni-Fe (oxy)hydroxides shifts the onset of electrical conductivity to lower potentials, but has little effect on the intrinsic OER activity, with the most-active Ni-Co-Fe (oxy)hydroxide having an OER turn-over frequency only ~ 1.5 times that of the Ni-Fe (oxy)hydroxides. The magnitudes of the electrical conductivities are similar for all the compositions measured. Density-functional-theory-calculated projected density of states show a significant contribution of all chemical elements at the valence band edge of the mixed-metal oxyhydroxide electronic structure, demonstrating significant electronic hybridization between the elements. The calculations suggest the involvement of all the elements in modulating the electronic structure at putative Fe-based active sites that are probably located at edges or defects in the two-dimensional oxyhydroxide sheets.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure

Show Author's information Michaela Burke Stevens1,§Lisa J. Enman1,§Ester Hamal Korkus2Jeremie Zaffran2Christina D. M. Trang1James Asbury1Matthew G. Kast1Maytal Caspary Toroker2( )Shannon W. Boettcher1( )
Department of Chemistry & Biochemistry and the Materials Science InstituteUniversity of OregonEugeneOR97403USA
Department of Materials Science & Engineering and The Nancy & Stephen Grand Technion Energy Program TechnionIsrael Institute of TechnologyHaifa3200003Israel

§ Michaela Burke Stevens and Lisa J. Enman contributed equally to this work.

Abstract

Nickel-, cobalt-, and iron-based (oxy)hydroxides comprise the most-commonly studied electrocatalysts for the oxygen-evolution reaction (OER) in alkaline solution. A fundamental understanding of composition-structure-activity relationships for mixed-metal Ni-Co and Ni-Co-Fe (oxy)hydroxides is important to guide the design of advanced OER catalysts. Here we use cyclic voltammetry, chronopotentiometry, inductively-coupled plasma-optical emission spectroscopy, and in situ electrical conductivity measurements to characterize the properties and activity of various compositions of Ni-Co-Fe (oxy)hydroxides prepared by cathodic co-electrodeposition. Consistent with previous studies, we find Fe is essential for the mixed-metal (oxy)hydroxides to achieve high OER activity. In the rigorous absence of Fe (achieved by using specially cleaned electrolytes), the most-active Ni-Co (oxy)hydroxide composition has an OER turn-over frequency only twice that of pure Co (oxy)hydroxide, suggesting minimal synergism between the two metals. The addition of Co to Ni-Fe (oxy)hydroxides shifts the onset of electrical conductivity to lower potentials, but has little effect on the intrinsic OER activity, with the most-active Ni-Co-Fe (oxy)hydroxide having an OER turn-over frequency only ~ 1.5 times that of the Ni-Fe (oxy)hydroxides. The magnitudes of the electrical conductivities are similar for all the compositions measured. Density-functional-theory-calculated projected density of states show a significant contribution of all chemical elements at the valence band edge of the mixed-metal oxyhydroxide electronic structure, demonstrating significant electronic hybridization between the elements. The calculations suggest the involvement of all the elements in modulating the electronic structure at putative Fe-based active sites that are probably located at edges or defects in the two-dimensional oxyhydroxide sheets.

Keywords: density functional theory, electrocatalysis, heterogeneous catalysis, oxygen evolution, water electrolysis

References(73)

1

Ursua, A.; Gandia, L. M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410-426.

2

Armaroli, N.; Balzani, V. Solar electricity and solar fuels: Status and perspectives in the context of the energy transition. Chem. —Eur. J. 2016, 22, 32-57.

3

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.

4

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.

5

Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638-3648.

6

Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253-17261.

7

Burke, M. S.; Zou, S. H.; Enman, L. J.; Kellon, J. E.; Gabor, C. A.; Pledger, E.; Boettcher, S. W. Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 2015, 6, 3737-3742.

8

Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.

9

Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem. 2016, 128, 3758-3762.

10

Bi, Y. M.; Cai, Z.; Zhou, D. J.; Tian, Y.; Zhang, Q.; Zhang, Q.; Kuang, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. J. Catal. 2018, 358, 100-107.

11

Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 1987, 134, 377-384.

12

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744-6753.

13
Edison, T. A. Electrolyte for alkaline storage batteries. U.S. Patent 876, 445, January 14, 1908.
14

Klaus, S.; Cai, Y.; Louie, M. W.; Trotochaud, L.; Bell, A. T. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 2015, 119, 7243-7254.

15

Tseung, A. C. C.; Jasem, S. Oxygen evolution on semiconducting oxides. Electrochim. Acta 1977, 22, 31-34.

16

Jasem, S. M.; Tseung, A. C. C. A potentiostatic pulse study of oxygen evolution on Teflon-bonded nickel-cobalt oxide electrodes. J. Electrochem. Soc. 1979, 126, 1353-1360.

17

Kreysa, G.; Håkansson, B. Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 1986, 201, 61-83.

18

Wang, L.; Lin, C.; Huang, D. K.; Zhang, F. X.; Wang, M. K.; Jin, J. A comparative study of composition and morphology effect of NixCo1−x(OH)2 on oxygen evolution/reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 10172-10180.

19

Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.

20

Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. ACS Nano 2014, 8, 9518-9523.

21

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580-11586.

22

Singh, R. N.; Pandey, J. P.; Singh, N. K.; Lal, B.; Chartier, P.; Koenig, J. F. Sol-gel derived spinel MxCo3−xO4 (M = Ni, Cu; 0 ≤ x ≤ 1) films and oxygen evolution. Electrochim. Acta 2000, 45, 1911-1919.

23

Yan, X. D.; Li, K. X.; Lyu, L.; Song, F.; He, J.; Niu, D. M.; Liu, L.; Hu, X. L.; Chen, X. B. From water oxidation to reduction: Transformation from NixCo3−xO4 nanowires to NiCo/NiCoOx heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 3208-3214.

24

Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.

25

Zhu, C. Z.; Wen, D.; Leubner, S.; Oschatz, M.; Liu, W.; Holzschuh, M.; Simon, F.; Kaskel, S.; Eychmüller, A. Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Chem. Commun. 2015, 51, 7851-7854.

26

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

27

Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421-1427.

28

Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Core-ring structured NiCo2O4 nanoplatelets: Synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 2008, 18, 1441-1447.

29

Bocca, C.; Barbucci, A.; Delucchi, M.; Cerisola, G. Nickel-cobalt-oxide-coated electrodes: Influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution. Int. J. Hydrogen Energy 1999, 24, 21-26.

30

Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2013, 52, 13567-13570.

31

Srivastava, M.; Elias Uddin, M.; Singh, J.; Kim, N. H.; Lee, J. H. Preparation and characterization of self-assembled layer by layer NiCo2O4-reduced graphene oxide nanocomposite with improved electrocatalytic properties. J. Alloys Compd. 2014, 590, 266-276.

32

Wang, X. L.; Xiao, H.; Li, A.; Li, Z.; Liu, S. J.; Zhang, Q. H.; Gong, Y.; Zheng, L. R.; Zhu, Y. Q.; Chen, C. et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J. Am. Chem. Soc. 2018, 140, 15336-15341.

33

Xiao, C. L.; Lu, X. Y.; Zhao, C. Unusual synergistic effects upon incorporation of Fe and/or Ni into mesoporous Co3O4 for enhanced oxygen evolution. Chem. Commun. 2014, 50, 10122-10125.

34

Bates, M. K.; Jia, Q. Y.; Doan, H.; Liang, W. T.; Mukerjee, S. Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction. ACS Catal. 2016, 6, 155-161.

35

Zhao, X.; Fu, Y.; Wang, J.; Xu, Y. J.; Tian, J. H.; Yang, R. Z. Ni-doped CoFe2O4 hollow nanospheres as efficient bi-functional catalysts. Electrochim. Acta 2016, 201, 172-178.

36

Wang, A. L.; Xu, H.; Li, G. R. NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting. ACS Energy Lett. 2016, 1, 445-453.

37

Wang, T.; Xu, W. C.; Wang, H. X. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochim. Acta 2017, 257, 118-127.

38

Gerken, J. B.; Shaner, S. E.; Massé, R. C.; Porubsky, N. J.; Stahl, S. S. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal. Energy Environ. Sci. 2014, 7, 2376-2382.

39

Fan, J. Q.; Chen, Z. F.; Shi, H. J.; Zhao, G. H. In situ grown, self-supported iron-cobalt-nickel alloy amorphous oxide nanosheets with low overpotential toward water oxidation. Chem. Commun. 2016, 52, 4290-4293.

40

Deng, X. H.; Öztürk, S.; Weidenthaler, C.; Tüysüz, H. Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 21225-21233.

41

Long, X.; Xiao, S.; Wang, Z. L.; Zheng, X. L.; Yang, S. H. Co intake mediated formation of ultrathin nanosheets of transition metal LDH—An advanced electrocatalyst for oxygen evolution reaction. Chem. Commun. 2015, 51, 1120-1123.

42

Zhu, X. L.; Tang, C.; Wang, H. F.; Li, B. Q.; Zhang, Q.; Li, C Y.; Yang, C. H.; Wei, F. Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A, 2016, 4, 7245-7250.

43

Dong, C. Q.; Han, L. L.; Zhang, C.; Zhang, Z. H. Scalable dealloying route to mesoporous ternary CoNiFe layered double hydroxides for efficient oxygen evolution. ACS Sustainable Chem. Eng. 2018, 6, 16096-16104.

44

Wu, Z. C.; Wang, X.; Huang, J. S.; Gao, F. A Co-doped Ni-Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. J. Mater. Chem. A 2018, 6, 167-178.

45

Thenuwara, A. C.; Attanayake, N. H.; Yu, J.; Perdew, J. P.; Elzinga, E. J.; Yan, Q. M.; Strongin, D. R. Cobalt intercalated layered NiFe double hydroxides for the oxygen evolution reaction. J. Phys. Chem. B 2018, 122, 847-854.

46

Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946-8957.

47

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.

48

Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 2017, 29, 120-140.

49

Merrill, M.; Worsley, M.; Wittstock, A.; Biener, J.; Stadermann, M. Determination of the "NiOOH" charge and discharge mechanisms at ideal activity. J. Electroanal. Chem. 2014, 717-718, 177-188.

50

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60-63.

51

Deng, J.; Nellist, M. R.; Stevens, M. B.; Dette, C.; Wang, Y.; Boettcher, S. W. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy. Nano Lett. 2017, 17, 6922-6926.

52

Dette, C.; Hurst, M. R.; Deng, J.; Nellist, M. R.; Boettcher, S. W. Structural evolution of metal (oxy)hydroxide nanosheets during the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 5590-5594.

53

Ye, S. H.; Shi, Z. X.; Feng, J. X.; Tong, Y. X.; Li, G. R. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 2672-2676.

54

Zou, S. H.; Burke, M. S.; Kast, M. G.; Fan, J.; Danilovic, N.; Boettcher, S. W. Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: Intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 2015, 27, 8011-8020.

55

Batchellor, A. S.; Kwon, G.; Laskowski, F. A. L.; Tiede, D. M.; Boettcher, S. W. Domain structures of Ni and NiFe (oxy)hydroxide oxygen-evolution catalysts from X-ray pair distribution function analysis. J. Phys. Chem. C 2017, 121, 25421-25429.

56

Doyle, R. L.; Godwin, I. J.; Brandon, M. P.; Lyons, M. E. G. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 2013, 15, 13737-13783.

57

Hunter, B. M.; Thompson, N. B.; Müller, A. M.; Rossman, G. R.; Hill, M. G.; Winkler, J. R.; Gray, H. B. Trapping an iron(Ⅵ) water-splitting intermediate in nonaqueous media. Joule 2018, 2, 747-763.

58

Enman, L. J.; Stevens, M. B.; Dahan, M. H.; Nellist, M. R.; Toroker, M. C.; Boettcher, S. W. Operando X-ray absorption spectroscopy shows iron oxidation is concurrent with oxygen evolution in cobalt-iron (oxy)hydroxide electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 12840-12844.

59

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.

60

Kuznetsov, D. A.; Han, B. H.; Yu, Y.; Rao, R. R.; Hwang, J.; Román-Leshkov, Y.; Shao-Horn, Y. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2018, 2, 225-244.

61

Forslund, R. P.; Hardin, W. G.; Rong, X.; Abakumov, A. M.; Filimonov, D.; Alexander, C. T.; Mefford, J. T.; Iyer, H.; Kolpak, A. M.; Johnston, K. P. et al. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexOδ Ruddlesden-Popper oxides. Nat. Commun. 2018, 9, 3150.

62

Enman, L. J.; Burke, M. S.; Batchellor, A. S.; Boettcher, S. W. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy)hydroxide in alkaline media. ACS Catal. 2016, 6, 2416-2423.

63

Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361-11364.

64

Zhang, T.; Nellist, M. R.; Enman, L. J.; Xiang, J. H.; Boettcher, S. W. Modes of Fe incorporation in Co-Fe (oxy)hydroxide oxygen evolution electrocatalysts. ChemSusChem 2018, 11, 1-8.

65

Xu, D. Y.; Stevens, M. B.; Cosby, M. R.; Oener, S. Z.; Smith, A. M.; Enman, L. J.; Ayers, K. E.; Capuano, C. B.; Renner, J. N.; Danilovic, N. et al. Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: Effects of catalyst conductivity and comparison with performance in three-electrode cells. ACS Catal. 2019, 9, 7-15.

66

Natan, M. J.; Belanger, D.; Carpenter, M. K.; Wrighton, M. S. pH-sensitive nickel(Ⅱ) hydroxide-based microelectrochemical transistors. J. Phys. Chem. 1987, 91, 1834-1842.

67

Zhou, H. Q.; Yu, F.; Sun, J. Y.; He, R.; Chen, S.; Chu, C. W.; Ren, Z. F. Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation. Proc. Natl. Acad. Sci. USA 2017, 114, 5607-5611.

68

Ayers, K. E.; Anderson, E. B.; Capuano, C.; Carter, B.; Dalton, L.; Hanlon, G.; Manco, J.; Niedzwiecki, M. Research advances towards low cost, high efficiency PEM electrolysis. ECS Trans. 2010, 33, 3-15.

69

Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982-9985.

70

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

71

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

72

Conesa, J. C. Electronic structure of the (undoped and Fe-doped) NiOOH O2 evolution electrocatalyst. J. Phys. Chem. C 2016, 120, 18999-19010.

73

Zaffran, J.; Toroker, M. C. Metal-oxygen bond ionicity as an efficient descriptor for doped NiOOH photocatalytic activity. ChemPhysChem 2016, 17, 1630-1636.

File
12274_2019_2391_MOESM1_ESM.pdf (4.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 February 2019
Revised: 19 March 2019
Accepted: 22 March 2019
Published: 13 April 2019
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was primarily supported by the National Science Foundation Chemical Catalysis program under Grant CHE-1566348. The computational work was supported by the Nancy and Stephen Grand Technion Energy Program (GTEP) and a grant from the Ministry of Science and Technology (MOST), Israel. The project made use of CAMCOR facilities supported by grants from the W. M. Keck Foundation, the M. J. Murdock Charitable Trust, ONAMI, the Air Force Research Laboratory (No. FA8650-05-1-5041), the National Science Foundation (Nos. 0923577 and 0421086), and the University of Oregon. ICP-OES was performed at the W. M. Keck Collaboratory for Plasma Spectrometry at Oregon State University and we acknowledge Andy Ungerer for help with data acquisition and interpretation. S. W. B. further acknowledges support from the Sloan and Dreyfus Foundations. The students of the UO 2015 CH399 "Research Immersion" course are acknowledged for preliminary data collection. The authors thank Adam Batchellor for insightful discussion.

Return