Journal Home > Volume 12 , Issue 9

When quantum emitters and plasmonic nanoparticles are in close vicinity, the energy exchange, termed as plasmon-exciton coupling, can make the absorption and emission behavior of the hybrid structure very different from those of the two constituents alone. The coupling strength between the two constituents highly depends on how the hybrid structure is constructed. As a result, a diverse range of coupling effect arise including plasmon induced fluorescence quenching/enhancing (weak coupling), Fano interference (intermediate coupling), Rabi-splitting and lasing (strong coupling). The emergence of different coupling behavior can be controlled by the different combinations of quantum emitters and plasmonic nanoparticles as well as the spatial arrangement of the individual components. Colloidal assembly/synthesis methods are essentially delicate strategies that can build the hybrid nanostructures with nanometer precision and allow for large-scale processing. In this review, we discuss the theoretical models that apply to different coupling behaviors, the optical properties of the hybrid systems, and the advancement of colloidal methods to manipulate the plasmon-exciton in the hybrid structures. We also provide perspectives on the challenges and future directions of the research in coupled plasmon-exciton nanosystems.


menu
Abstract
Full text
Outline
About this article

Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures

Show Author's information Yi Luo1Jing Zhao1,2( )
Department of ChemistryUniversity of Connecticut55 North Eagleville RoadStorrs06269USA
Institute of Materials ScienceUniversity of Connecticut97 North Eagleville RoadStorrs06269USA

Abstract

When quantum emitters and plasmonic nanoparticles are in close vicinity, the energy exchange, termed as plasmon-exciton coupling, can make the absorption and emission behavior of the hybrid structure very different from those of the two constituents alone. The coupling strength between the two constituents highly depends on how the hybrid structure is constructed. As a result, a diverse range of coupling effect arise including plasmon induced fluorescence quenching/enhancing (weak coupling), Fano interference (intermediate coupling), Rabi-splitting and lasing (strong coupling). The emergence of different coupling behavior can be controlled by the different combinations of quantum emitters and plasmonic nanoparticles as well as the spatial arrangement of the individual components. Colloidal assembly/synthesis methods are essentially delicate strategies that can build the hybrid nanostructures with nanometer precision and allow for large-scale processing. In this review, we discuss the theoretical models that apply to different coupling behaviors, the optical properties of the hybrid systems, and the advancement of colloidal methods to manipulate the plasmon-exciton in the hybrid structures. We also provide perspectives on the challenges and future directions of the research in coupled plasmon-exciton nanosystems.

Keywords: metal nanoparticles, quantum emitter, plasmon-exciton coupling, colloidal assembly, Purcell effect, Rabi-splitting

References(69)

1

Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.

2

Li, M.; Cushing, S. K.; Wu, N. Q. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406.

3

West, J. L.; Halas, N. J. Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Ann. Rev. Biomed. Eng. 2003, 5, 285–292.

4

Yang, A. K.; Odom, T. W. Breakthroughs in photonics 2014: Advances in plasmonic nanolasers. IEEE Photonics J. 2015, 7, 0700606.

5

Nabika, H.; Takase, M.; Nagasawa, F.; Murakoshi, K. Toward plasmon- induced photoexcitation of molecules. J. Phys. Chem. Lett. 2010, 1, 2470–2487.

6

Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 2011, 111, 3888–3912.

7

Zhang, P.; Protsenko, I.; Sandoghdar, V.; Chen, X. W. A single-emitter gain medium for bright coherent radiation from a plasmonic nanoresonator. ACS Photonics. 2017, 4, 2738–2744.

8

Ming, T.; Chen, H. J.; Jiang, R. B.; Li, Q.; Wang, J. F. Plasmon-controlled fluorescence: Beyond the intensity enhancement. J. Phys. Chem. Lett. 2012, 3, 191–202.

9

Achermann, M. Exciton−plasmon interactions in metal−semiconductor nanostructures. J. Phys. Chem. Lett. 2010, 1, 2837–2843.

10

Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002.

11

Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 2007, 7, 496–501.

12

Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iati, M. A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter. 2017, 29, 203002.

13

Tame, M. S.; McEnery, K. R.; Özdemir, Ş. K.; Lee, J.; Maier, S. A.; Kim, M. S. Quantum plasmonics. Nat. Phys. 2013, 9, 329–340.

14

Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 2015, 10, 2–6.

15

Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.; Gaponenko, S.; Nabiev, I.; Woggon, U.; Artemyev, M. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2002, 2, 1449–1452.

16

Purcell, E. M.; Torrey, H. C.; Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 1946, 69, 37–38.

17

Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photonics. 2015, 9, 427–435.

18

Rodriguez, S. R. K.; Feist, J.; Verschuuren, M. A.; Vidal, F. J. G.; Rivas, J. G. Thermalization and cooling of plasmon-exciton polaritons: Towards quantum condensation. Phys. Rev. Lett. 2013, 111, 166802.

19

Nan, F.; Ding, S. J.; Ma, L.; Cheng, Z. Q.; Zhong, Y. T.; Zhang, Y. F.; Qiu, Y. H.; Li, X. G.; Zhou, L.; Wang, Q. Q. Plasmon resonance energy transfer and plexcitonic solar cell. Nanoscale 2016, 8, 15071–15078.

20

Harris, S. E.; Field, J. E.; Imamoğlu, A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 1990, 64, 1107–1110.

21

Khitrova, G.; Gibbs, H. M.; Kira, M.; Koch, S. W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81–90.

22

Christopoulos, S.; Von Högersthal G. B. H.; Grundy, A. J. D.; Lagoudakis, P. G.; Kavokin, A. V.; Baumberg, J. J.; Christmann, G.; Butté, R.; Feltin, E.; Carlin, J. F. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 2007, 98, 126405.

23

Kolaric, B.; Maes, B.; Clays, K.; Durt, T.; Caudano, Y. Molding molecular and material properties by strong light-matter coupling. arXiv preprint arXiv: 1802.06029, 2018.

24

Hoang, T. B.; Akselrod, G. M.; Mikkelsen, M. H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 2015, 16, 270–275.

25

Groß, H.; Hamm, J. M.; Tufarelli, T.; Hess, O.; Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 2018, 4, eaar4906.

26

Mundoor, H.; Sheetah, G. H.; Park, S.; Ackerman, P. J.; Smalyukh, I. I.; van de Lagemaat, J. Tuning and switching a plasmonic quantum dot "sandwich" in a nematic line defect. ACS Nano. 2018, 12, 2580–2590.

27

Liu, N. G.; Prall, B. S.; Klimov, V. I. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: Synthesis and analysis of semiconductor-metal interactions. J. Am. Chem. Soc. 2006, 128, 15362–15363.

28

Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Chem. Rev. 2011, 111, 3736–3827.

DOI
29

Wang, Y.; Chen, G.; Yang, M. X.; Silber, G.; Xing, S. X.; Tan, L. H.; Wang, F.; Feng, Y. H; Liu, X. G; Li, S. Z. et al. A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nat. Commun. 2010, 1, 87.

30

Baranov, D. G.; Wersäll, M.; Cuadra, J.; Antosiewicz, T. J.; Shegai, T. Novel nanostructures and materials for strong light-matter interactions. ACS Photonics 2017, 5, 24–42.

31

Hümmer, T.; García-Vidal, F. J.; Martín-Moreno, L.; Zueco, D. Weak and strong coupling regimes in plasmonic QED. Phys. Rev. B 2013, 87, 115419.

32

Hartsfield, T.; Chang, W. S.; Yang, S. C.; Ma, T.; Shi, J. W.; Sun, L. Y.; Shvets, G.; Link, S.; Li, X. Q. Single quantum dot controls a plasmonic cavity's scattering and anisotropy. Proc. Natl. Acad. Sci. USA 2015, 112, 12288–12292.

33

Luk'yanchuk, B.; Zheludev, N. I.; Maier, S. A.; Halas, N. J.; Nordlander, P.; Giessen, H.; Chong, C. T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715.

34

Faucheaux, J. A.; Fu, J. Y.; Jain, P. K. Unified theoretical framework for realizing diverse regimes of strong coupling between plasmons and electronic transitions. J. Phys. Chem. C 2014, 118, 2710–2717.

35

Yang, Z. J.; Antosiewicz, T. J.; Shegai, T. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions. Opt. Exp. 2016, 24, 20373–20381.

36

Zengin, G.; Wersäll, M.; Nilsson, S.; Antosiewicz, T. J.; Käll, M.; Shegai, T. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett. 2015, 114, 157401.

37

Leng, H. X.; Szychowski, B.; Daniel, M. C.; Pelton, M. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Nat. Commun. 2018, 9, 4012.

38

Li, X. G.; Zhou, L.; Hao, Z. H.; Wang, Q. Q. Plasmon–exciton coupling in complex systems. Adv. Opt. Mater. 2018, 6, 1800275.

39

Jennings, T. L.; Singh, M. P.; Strouse, G. F. Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: Probing NSET validity. J. Am. Chem. Soc. 2006, 128, 5462–5467.

40

Breshike, C. J.; Riskowski, R. A.; Strouse, G. F. Leaving Förster resonance energy transfer behind: Nanometal surface energy transfer predicts the size-enhanced energy coupling between a metal nanoparticle and an emitting dipole. J. Phys. Chem. C 2013, 117, 23942–23949.

41

Sen, T.; Patra, A. Recent advances in energy transfer processes in gold- nanoparticle-based assemblies. J. Phys. Chem. C 2012, 116, 17307– 17317.

42

Li, M.; Cushing, S. K.; Wang, Q. Y.; Shi, X. D.; Hornak, L. A.; Hong, Z. L.; Wu, N. Q. Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. J. Phys. Chem. Lett. 2011, 2, 2125–2129.

43

Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901.

44

Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano. 2014, 8, 8392–8406.

45

Bardhan, R.; Grady, N. K.; Cole, J. R.; Joshi, A.; Halas, N. J. Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods. ACS Nano. 2009, 3, 744–752.

46

Ayala-Orozco, C., Liu, J. G.; Knight, M. W.; Wang, Y. M.; Day, J. K.; Nordlander, P.; Halas, N. J. Fluorescence enhancement of molecules inside a gold nanomatryoshka. Nano Lett. 2014, 14, 2926–2933.

47

Dey, S.; Zhou, Y. D.; Sun, Y. L.; Jenkins, J. A.; Kriz, D.; Suib, S. L.; Chen, O.; Zou, S. L.; Zhao, J. Excitation wavelength dependent photon anti-bunching/ bunching from single quantum dots near gold nanostructures. Nanoscale 2018, 10, 1038–1046.

48

Wax, T. J.; Dey, S.; Chen, S. T.; Luo, Y.; Zou, S. L.; Zhao, J. Excitation wavelength-dependent photoluminescence decay of hybrid gold/quantum dot nanostructures. ACS Omega 2018, 3, 14151–14156.

49

Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 2016, 7, ncomms11823.

50

Würthner, F.; Kaiser, T. E.; Saha‐Möller, C. R. ChemInform abstract: J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. , Int. Ed. 2011, 50, 3376–3410.

51

Stockman, M. I. Nanoplasmonics: Past, present, and glimpse into future. Opt. Express 2011, 19, 22029–22106.

52

Balci, S.; Kucukoz, B.; Balci, O.; Karatay, A.; Kocabas, C.; Yaglioglu, G. Tunable plexcitonic nanoparticles: A model system for studying plasmon– exciton interaction from the weak to the ultrastrong coupling regime. ACS Photonics 2016, 3, 2010–2016.

53

Wersäll, M.; Cuadra, J.; Antosiewicz, T. J.; Balci, S.; Shegai, T. Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano Lett. 2017, 17, 551–558.

54

Liu, R. M.; Zhou, Z. K.; Yu, Y. C.; Zhang, T. W.; Wang, H.; Liu, G. H.; Wei, Y. M.; Chen, H. J.; Wang, X. H. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett. 2017, 118, 237401.

55

Zengin, G.; Johansson, G.; Johansson, P.; Antosiewicz, T. J.; Käll, M.; Shegai, T. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep. 2013, 3, 3074.

56

Schlather, A. E.; Large, N.; Urban, A. S.; Nordlander, P.; Halas, N. J. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett. 2013, 13, 3281–3286.

57

Ming, T.; Zhao, L.; Yang, Z.; Chen, H. J.; Sun, L. D.; Wang, J. F.; Yan, C. H. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett. 2009, 9, 3896–3903.

58

Nepal, D.; Drummy, L. F.; Biswas, S.; Park, K.; Vaia, R. A. Large scale solution assembly of quantum dot–gold nanorod architectures with plasmon enhanced fluorescence. ACS Nano. 2013, 7, 9064–9074.

59

Cohen-Hoshen, E.; Bryant, G. W.; Pinkas, I.; Sperling, J.; Bar-Joseph, I. Exciton–plasmon interactions in quantum dot–gold nanoparticle structures. Nano Lett. 2012, 12, 4260–4264.

60

Samanta, A.; Zhou, Y. D.; Zou, S. L.; Yan, H.; Liu, Y. Fluorescence quenching of quantum dots by gold nanoparticles: A potential long range spectroscopic ruler. Nano Lett. 2014, 14, 5052–5057.

61

Zhang, T. S.; Gao, N. Y.; Li, S.; Lang, M. J.; Xu, Q. H. Single-particle spectroscopic study on fluorescence enhancement by plasmon coupled gold nanorod dimers assembled on DNA origami. J. Phys. Chem. Lett. 2015, 6, 2043–2049.

62

Roller, E. M.; Argyropoulos, C.; Högele, A.; Liedl, T.; Pilo-Pais, M. Plasmon–exciton coupling using DNA templates. Nano Lett. 2016, 16, 5962–5966.

63

Ma, X. D.; Tan, H.; Kipp, T.; Mews, A. Fluorescence enhancement, blinking suppression, and gray states of individual semiconductor nanocrystals close to gold nanoparticles. Nano Lett. 2010, 10, 4166–4174.

64

Ji, B. T.; Giovanelli, E.; Habert, B.; Spinicelli, P.; Nasilowski, M.; Xu, X. Z.; Lequeux, N.; Hugonin, J. P.; Marquier, F.; Greffet, J. J. et al. Non-blinking quantum dot with a plasmonic nanoshell resonator. Nat. Nanotechnol. 2015, 10, 170–175.

65

Jin, Y. D.; Gao, X. H. Plasmonic fluorescent quantum dots. Nat. Nanotechnol. 2009, 4, 571–576.

66

Karan, N. S.; Keller, A. M.; Sampat, S.; Roslyak, O.; Arefin, A.; Hanson, C. J.; Casson, J. L.; Desireddy, A.; Ghosh, Y.; Piryatinski, A. et al. Plasmonic giant quantum dots: Hybrid nanostructures for truly simultaneous optical imaging, photothermal effect and thermometry. Chem. Sci. 2015, 6, 2224– 2236.

67

Lakowicz, J. R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 2006, 1, 5–33.

68

Geddes, C. D.; Cao, H. S.; Gryczynski, I.; Gryczynski, Z.; Fang, J. Y.; Lakowicz, J. R. Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. A 2003, 107, 3443–3449.

69

Bauch, M.; Toma, K.; Toma, M.; Zhang, Q. W.; Dostalek, J. Plasmon- enhanced fluorescence biosensors: A review. Plasmonics. 2014, 9, 781– 799.

Publication history
Copyright
Acknowledgements

Publication history

Received: 31 January 2019
Revised: 21 March 2019
Accepted: 22 March 2019
Published: 12 April 2019
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We acknowledge the financial supported by NSF CAREER Grant (CHE 1554800).

Return