Journal Home > Volume 12 , Issue 5

Despite demonstrating exciting potential for applications such as drug delivery and biosensing, the development of nanodevices for practical applications and broader use in research and education are still hindered by the time, effort, and cost associated with DNA origami fabrication. Simple and robust methods to perform and scale the DNA origami self-assembly process are critical to facilitate broader use and translation to industrial or clinical applications. We report a simple approach to fold DNA origami nanostructures that is fast, robust, and scalable. We demonstrate fabrication at scales approximately 100–1, 500-fold higher than typical scales. We further demonstrate an approach we termed low-cost efficient annealing (LEAN) self-assembly involving initial heating at 65 ℃ for 10 min, then annealing at 51 ℃ for 2 h, followed by brief quenching at 4 ℃ that leads to effective assembly of a range of DNA origami structures tested. In contrast to other methods for scaling DNA origami assembly, this approach can be carried out using cheap and widely available equipment (e.g., hot plates, water baths, and laboratory burners) and uses standard recipes and materials so is readily applied to any existing or new DNA origami designs. We envision these methods can facilitate device development for commercial applications and facilitate broader use of DNA origami in research and education.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Low-cost, simple, and scalable self-assembly of DNA origami nanostructures

Show Author's information Patrick D. Halley1,2Randy A. Patton2Amjad Chowdhury1,John C. Byrd3Carlos E. Castro2,4( )
Department of Chemical and Biomolecular Engineering,The Ohio State University,Columbus, OH,43210,USA;
Department of Mechanical and Aerospace Engineering,The Ohio State University,Columbus, OH,43210,USA;
Division of Hematology, Department of Internal Medicine, and OSU Comprehensive Cancer Center,The Ohio State University,Columbus, OH,43210,USA;
Biophysics Graduate Program,The Ohio State University,Columbus, OH,43210,USA;

Present address: Department of Chemical Engineering, University of Texas Austin, Austin, TX 78712, USA

Abstract

Despite demonstrating exciting potential for applications such as drug delivery and biosensing, the development of nanodevices for practical applications and broader use in research and education are still hindered by the time, effort, and cost associated with DNA origami fabrication. Simple and robust methods to perform and scale the DNA origami self-assembly process are critical to facilitate broader use and translation to industrial or clinical applications. We report a simple approach to fold DNA origami nanostructures that is fast, robust, and scalable. We demonstrate fabrication at scales approximately 100–1, 500-fold higher than typical scales. We further demonstrate an approach we termed low-cost efficient annealing (LEAN) self-assembly involving initial heating at 65 ℃ for 10 min, then annealing at 51 ℃ for 2 h, followed by brief quenching at 4 ℃ that leads to effective assembly of a range of DNA origami structures tested. In contrast to other methods for scaling DNA origami assembly, this approach can be carried out using cheap and widely available equipment (e.g., hot plates, water baths, and laboratory burners) and uses standard recipes and materials so is readily applied to any existing or new DNA origami designs. We envision these methods can facilitate device development for commercial applications and facilitate broader use of DNA origami in research and education.

Keywords: DNA nanotechnology, DNA origami, self assembly, scalable nanofabrication, low cost fabrication, nanotechnology education

References(50)

1

Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

2

Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009, 459, 414–418.

3

Castro, C. E.; Kilchherr, F.; Kim, D. N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H. A primer to scaffolded DNA origami. Nat. Methods 2011, 8, 221–229.

4

Ke, Y. G.; Castro, C.; Choi, J. H. Structural DNA nanotechnology: Artificial nanostructures for biomedical research. Annu. Rev. Biomed. Eng. 2018, 20, 375–401.

5

Wang, P. F.; Meyer, T. A.; Pan, V.; Dutta, P. K.; Ke, Y. G. The beauty and utility of DNA origami. Chem 2017, 2, 359–382.

6

Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Högberg, B. DNA rendering of polyhedral meshes at the nanoscale. Nature 2015, 523, 441–444.

7

Matthies, M.; Agarwal, N. P.; Schmidt, T. L. Design and synthesis of triangulated DNA origami trusses. Nano Lett. 2016, 16, 2108–2113.

8

Veneziano, R.; Ratanalert, S.; Zhang, K. M.; Zhang, F.; Yan, H.; Chiu, W.; Bathe, M. Designer nanoscale DNA assemblies programmed from the top down. Science 2016, 352, 1534.

9

Zhao, Y. X.; Shaw, A.; Zeng, X. H.; Benson, E.; Nyström, A. M.; Högberg, B. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 2012, 6, 8684–8691.

10

Jiang, Q.; Song, C.; Nangreave, J.; Liu, X. W.; Lin, L.; Qiu, D. L.; Wang, Z. G.; Zou, G. Z.; Liang, X. J.; Yan, H. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 2012, 134, 13396–133403.

11

Zhang, Q.; Jiang, Q.; Li, N.; Dai, L. R.; Liu, Q.; Song, L. L.; Wang, J. Y.; Li, Y. Q.; Tian, J.; Ding, B. Q. et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano 2014, 8, 6633–6643.

12

Halley, P. D.; Lucas, C. R.; McWilliams, E. M.; Webber, M. J.; Patton, R. A.; Kural, C.; Lucas, D. M.; Byrd, J. C.; Castro, C. E. Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model. Small 2016, 12, 308–320.

13

Banerjee, A.; Bhatia, D.; Saminathan, A.; Chakraborty, S.; Kar, S.; Krishnan, Y. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem., Int. Ed. 2013, 52, 6854–6857.

14

Douglas, S. M.; Bachelet, I.; Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012, 335, 831–834.

15

Kuzuya, A.; Sakai, Y.; Yamazaki, T.; Xu, Y.; Komiyama, M. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy. Nat. Commun. 2011, 2, 449.

16

Pfitzner, E.; Wachauf, C.; Kilchherr, F.; Pelz, B.; Shih, W. M.; Rief, M.; Dietz, H. Rigid DNA beams for high-resolution single-molecule mechanics. Angew. Chem. , Int. Ed. 2013, 52, 7766–7771.

17

Czogalla, A.; Kauert, D. J.; Seidel, R.; Schwille, P.; Petrov, E. P. DNA origami nanoneedles on freestanding lipid membranes as a tool to observe isotropic-nematic transition in two dimensions. Nano Lett. 2015, 15, 649–655.

18

Le, J. V.; Luo, Y.; Darcy, M. A.; Lucas, C. R.; Goodwin, M. F.; Poirier, M. G.; Castro, C. E. Probing nucleosome stability with a DNA origami nanocaliper. ACS Nano 2016, 10, 7073–7084.

19

Hudoba, M. W.; Luo, Y.; Zacharias, A.; Poirier, M. G.; Castro, C. E. Dynamic DNA origami device for measuring compressive depletion forces. ACS Nano 2017, 11, 6566–6573.

20

Funke, J. J.; Ketterer, P.; Lieleg, C.; Schunter, S.; Korber, P.; Dietz, H. Uncovering the forces between nucleosomes using DNA origami. Sci. Adv. 2016, 2, e1600974.

21

Voigt, N. V.; Tørring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsbaek, J. B.; Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher, F. et al. Single-molecule chemical reactions on DNA origami. Nat. Nanotechnol. 2010, 5, 200–203.

22

Linko, V.; Eerikäinen, M.; Kostiainen, M. A. A modular DNA origami-based enzyme cascade nanoreactor. Chem. Commun. 2015, 51, 5351–5354.

23

Praetorius, F.; Kick, B.; Behler, K. L.; Honemann, M. N.; Weuster-Botz, D.; Dietz, H. Biotechnological mass production of DNA origami. Nature 2017, 552, 84–87.

24

Li, S. P.; Jiang, Q.; Liu, S. L.; Zhang, Y. L.; Tian, Y. H.; Song, C.; Wang, J.; Zou, Y. G.; Anderson, G. J.; Han, J. Y. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258–264.

25

Ponnuswamy, N.; Bastings, M. M. C.; Nathwani, B.; Ryu, J. H.; Chou, L. Y. T.; Vinther, M.; Li, W. A.; Anastassacos, F. M.; Mooney, D. J.; Shih, W. M. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 2017, 8, 15654.

26

Jiang, D. W.; Ge, Z. L.; Im, H. J.; England, C. G.; Ni, D. L.; Hou, J. J.; Zhang, L. H.; Kutyreff, C. J.; Yan, Y. J.; Liu, Y. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2018, 2, 865–877.

27

Sobczak, J. P. J.; Martin, T. G.; Gerling, T.; Dietz, H. Rapid folding of DNA into nanoscale shapes at constant temperature. Science 2012, 338, 1458–1461.

28

Wagenbauer, K. F.; Engelhardt, F. A. S.; Stahl, E.; Hechtl, V. K.; Stömmer, P.; Seebacher, F.; Meregalli, L.; Ketterer, P.; Gerling, T.; Dietz, H. How we make DNA origami. Chembiochem 2017, 18, 1873–1885.

29

Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M. T.; Park, S. H.; Labean, T. H.; Reif, J. H. Programming DNA tube circumferences. Science 2008, 321, 824–826.

30

Kuzyk, A.; Laitinen, K. T.; Törmä, P. DNA origami as a nanoscale template for protein assembly. Nanotechnology 2009, 20, 235305.

31

Akbari, E.; Mollica, M. Y.; Lucas, C. R.; Bushman, S. M.; Patton, R. A.; Shahhosseini, M.; Song, J. W.; Castro, C. E. Engineering cell surface function with DNA origami. Adv. Mater. 2017, 29, 1703632.

32

Marras, A. E.; Zhou, L. F.; Su, H. J.; Castro, C. E. Programmable motion of DNA origami mechanisms. Proc. Natl. Acad. Sci. USA 2015, 112, 713–718.

33

Lei, D. S.; Marras, A. E.; Liu, J. F.; Huang, C. M.; Zhou, L. F.; Castro, C. E.; Su, H. J.; Ren, G. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography. Nat. Commun. 2018, 9, 592.

34

Ke, Y. G.; Douglas, S. M.; Liu, M. H.; Sharma, J.; Cheng, A. C.; Leung, A.; Liu, Y.; Shih, W. M.; Yan, H. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 2009, 131, 15903–15908.

35

Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H. DNA gridiron nanostructures based on four-arm junctions. Science 2013, 339, 1412–1415.

36

Nafisi, P. M.; Aksel, T.; Douglas, S. M. Construction of a novel phagemid to produce custom DNA origami scaffolds. Synth. Biol. 2018, 3, ysy015.

37

Marchi, A. N.; Saaem, I.; Vogen, B. N.; Brown, S.; LaBean, T. H. Toward larger DNA origami. Nano Lett. 2014, 14, 5740–5747.

38

Said, H.; Schüller, V. J.; Eber, F. J.; Wege, C.; Liedl, T.; Richert, C. M1.3-A small scaffold for DNA origami. Nanoscale 2013, 5, 284–290.

39

Veneziano, R.; Shepherd, T. R.; Ratanalert, S.; Bellou, L.; Tao, C. Q.; Bathe, M. In vitro synthesis of gene-length single-stranded DNA. Sci. Rep. 2018, 8, 6548.

40

Cui, Y.; Chen, R. P.; Kai, M. X.; Wang, Y. Q.; Mi, Y. L.; Wei, B. Versatile DNA origami nanostructures in simplified and modular designing framework. ACS Nano 2017, 11, 8199–8206.

41

Kumar, A.; Liang, Z. C. Chemical nanoprinting: A novel method for fabricating DNA microchips. Nucleic Acids Res. 2001, 29, e2.

42

Ma, S. Y.; Tang, N.; Tian, J. D. DNA synthesis, assembly and applications in synthetic biology. Curr. Opin. Chem. Biol. 2012, 16, 260–267.

43

Marchi, A. N.; Saaem, I.; Tian, J. D.; LaBean, T. H. One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double- stranded scaffold. ACS Nano 2013, 7, 903–910.

44

Quan, J. Y.; Saaem, I.; Tang, N.; Ma, S. Y.; Negre, N.; Gong, H.; White, K. P.; Tian, J. D. Parallel on-chip gene synthesis and application to optimization of protein expression. Nat. Biotechnol. 2011, 29, 449–452.

45

Ducani, C.; Kaul, C.; Moche, M.; Shih, W. M.; Högberg, B. Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides. Nat. Methods 2013, 10, 647–652.

46

Linko, V.; Kostiainen, M. A. Automated design of DNA origami. Nat. Biotechnol. 2016, 34, 826–827.

47

Lin, C. X.; Perrault, S. D.; Kwak, M.; Graf, F.; Shih, W. M. Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res. 2013, 41, e40.

48

Shaw, A.; Benson, E.; Högberg, B. Purification of functionalized DNA origami nanostructures. ACS Nano 2015, 9, 4968–4975.

49

Stahl, E.; Martin, T. G.; Praetorius, F.; Dietz, H. Facile and scalable preparation of pure and dense DNA origami solutions. Angew. Chem. , Int. Ed. 2014, 53, 12735–12740.

50

Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 2009, 37, 5001–5006.

File
12274_2019_2384_MOESM1_ESM.pdf (13.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 November 2018
Revised: 14 March 2019
Accepted: 14 March 2019
Published: 05 April 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by grants from the National Science Foundation (Award No. 1351159 to CEC) and the National Institute of Health (Award No. R01HL141941 to CEC and R35 CA197734 to JCB), and in part by D. Warren Brown Foundation, Four Winds Foundation, and the Harry T. Mangurian Jr Foundation. The authors also thank the Campus Microscopy and Imaging Facility and the NanoSystems Lab at The Ohio State University for imaging support and members of the Castro Lab, especially Dr. Chris Lucas, Josh Johnson, Jenny Le, and Molly Mollica for their feedback and suggestions for this work.

Return