Journal Home > Volume 12 , Issue 5

The development of compressible supercapacitors (SCs) that is tolerant to wide temperature range has been severely hindered due to the poor ionic conductivity and absence of extra functions in conventional polymer electrolytes. Herein, a highly conductive and compressible hydrogel polyelectrolyte has been prepared from polyacrylamide cross-linked by methacrylated graphene oxide (MGO-PAM) and the polyelectrolyte can maintain its excellent elasticity at -30 ℃ as well as its original shape at 100 ℃. As a result, the SC based on the MGO-PAM polyelectrolyte outperformed those fabricated with the conventional poly(vinyl alcohol) (PVA)/H2SO4 electrolyte over a wide temperature window between -30 and 100 ℃. Meanwhile, the device shows an excellent cycling stability (capacitance retention of 93.3% after 8, 000 cycles at -30 ℃ and 76.5 % after 4, 000 cycles under 100 ℃) and a reversible compressibility (a high capacitance retention of 94.1% under 80% compression). Therefore, the MGO-PAM polyelectrolyte enables the fabrication of compressible SCs with a wide operating temperature, rendering new insights for developing next-generation robust and multifunctional energy-storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A cross-linked polyacrylamide electrolyte with high ionic conductivity for compressible supercapacitors with wide temperature tolerance

Show Author's information Xuting JinGuoqiang SunGuofeng ZhangHongsheng YangYukun XiaoJian GaoZhipan Zhang( )Liangti Qu( )
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry, Beijing Institute of Technology,Beijing,100081,China;

Abstract

The development of compressible supercapacitors (SCs) that is tolerant to wide temperature range has been severely hindered due to the poor ionic conductivity and absence of extra functions in conventional polymer electrolytes. Herein, a highly conductive and compressible hydrogel polyelectrolyte has been prepared from polyacrylamide cross-linked by methacrylated graphene oxide (MGO-PAM) and the polyelectrolyte can maintain its excellent elasticity at -30 ℃ as well as its original shape at 100 ℃. As a result, the SC based on the MGO-PAM polyelectrolyte outperformed those fabricated with the conventional poly(vinyl alcohol) (PVA)/H2SO4 electrolyte over a wide temperature window between -30 and 100 ℃. Meanwhile, the device shows an excellent cycling stability (capacitance retention of 93.3% after 8, 000 cycles at -30 ℃ and 76.5 % after 4, 000 cycles under 100 ℃) and a reversible compressibility (a high capacitance retention of 94.1% under 80% compression). Therefore, the MGO-PAM polyelectrolyte enables the fabrication of compressible SCs with a wide operating temperature, rendering new insights for developing next-generation robust and multifunctional energy-storage devices.

Keywords: ionic conductivity, supercapacitors, compressibility, wide temperature tolerance, polyacrylamide electrolyte

References(66)

1

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

2

Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

3

Yu, D. S; Goh, K.; Wang, H.; Wei, L.; Jiang, W. C.; Zhang, Q.; Dai, L. M.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 9, 555–562.

4

Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

5

Yang, Y.; Huang, Q. Y.; Niu, L. Y.; Wang, D. R.; Yan, C.; She Y. Y.; Zheng, Z. J. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 2017, 29, 1606679.

6

Choi, C.; Kim, K. M.; Kim, K. J.; Lepró, X.; Spinks, G. M.; Baughman R. H.; Kim, S. J. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat. Commun. 2016, 7, 13811.

7

Li, C.; Islam, M.; Moore, J.; Sleppy, J.; Morrison, C.; Konstantinov, K.; Dou, S. X.; Renduchintala, C.; Thomas, J. Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat. Commun. 2016, 7, 13319.

8

Lu, Z.; Foroughi, J.; Wang, C. Y.; Long H. R.; Wallace, G. G. Superelastic hybrid CNT/graphene fibers for wearable energy storage. Adv. Energy Mater. 2017, 8, 1702047.

9

Li, L.; Zhang, J. B.; Peng, Z. W.; Li, Y. L.; Gao, C. T.; Ji, Y. S.; Ye, R. Q.; Kim, N. D.; Zhong, Q. F.; Yang, Y. et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 2016, 28, 838–845.

10

Yu, H. J.; Wu, J. H.; Fan, L. Q.; Xu, K. Q.; Zhong, X.; Lin Y. Z.; Lin, J. M. Improvement of the performance for quasi-solid-state supercapacitor by using PVA-KOH-KI polymer gel electrolyte. Electrochim. Acta 2011, 56, 6881–6886.

11

Kufian, M. Z.; Majid S. R.; Arof, A. K. Dielectric and conduction mechanism studies of PVA-orthophosphoric acid polymer electrolyte. Ionics 2007, 13, 231–234.

12

Fei, H. J.; Yang, C. Y.; Bao H.; Wang, G. C. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes. J. Power Sources 2014, 266, 488–495.

13

Lv, Q. Y.; Chi, K.; Zhang, Y.; Xiao, F.; Xiao, J. W.; Wang S.; Lohc, K. P. Ultrafast charge/discharge solid-state thin-film supercapacitors via regulating the microstructure of transition-metal-oxide. J. Mater. Chem. A. 2017, 5, 2759–2767.

14

Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Wang, Z. F.; Xue, Q.; Xie X. M.; Zhi, C. Y. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015, 6, 10310.

15

Huang, Y.; Zhong, M.; Shi, F. K.; Liu, X. Y.; Tang, Z. J.; Wang, Y. K.; Huang, Y.; Hou, H. Q.; Xie X. M.; Zhi, C. Y. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem., Int. Ed. 2017, 56, 9141–9145.

16

Wang, Z. K.; Pan, Q. M. An omni-healable supercapacitor integrated in dynamically cross-linked polymer networks. Adv. Funct. Mater. 2017, 27, 1700690.

17

Li, H. L.; Lv, T.; Li, N.; Yao, Y.; Liu K.; Chen, T. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity. Nanoscale 2017, 9, 18474–18481.

18

Liu, F. T.; Wang J. C.; Pan, Q. M. An all-in-one self-healable capacitor with superior performance. J. Mater. Chem. A 2018, 6, 2500–2506.

19

Tao, F.; Qin, L. M.; Wang Z. K.; Pan, Q M. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl. Mater. Interfaces 2017, 9, 15541–15548.

20

Liu, M. J.; Wang S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

21

Abbas, Q.; Béguin, F. Sustainable carbon/carbon supercapacitors operating down to -40 ℃ in aqueous electrolyte made with cholinium salt. ChemSusChem 2018, 11, 975–984.

22

Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539.

23

Zang, X. B.; Zhang, R. J.; Zhen, Z.; Lai, W. H.; Yang, C.; Kang F. Y.; Zhu, H. W. Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes. Nano Energy 2017, 40, 224–232.

24

Liu, W. W.; Yan, X. B.; Lang J. W.; Xue, Q. J. Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets. J. Mater. Chem. 2012, 22, 8853–8861.

25

Feng, L. X.; Wang, K.; Zhang, X.; Sun, X. Z.; Li, C.; Ge X. B.; Ma, Y. W. Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv. Funct. Mater. 2018, 28, 1704463.

26

Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181.

27

Dou, Q. Y.; Lei, S. L.; Wang, D. W.; Zhang, Q. N.; Xiao, D. W.; Guo, H. W.; Wang, A. P.; Yang, H.; Li, Y. L.; Shi S. Q. et al. Safe and high-rate supercapacitors based on an "acetonitrile/water in salt" hybrid electrolyte. Energy Environ. Sci. 2018, 11, 3212–3219.

28

Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama Y.; Yamada, A. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 2016, 1, 16129.

29

Dou, Q. Y.; Liu, L. Y.; Yang, B. J.; Lang J. W.; Yan, X. B. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors. Nat. Commun. 2017, 8, 2188.

30

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

31

Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 2010, 10, 4025–4031.

32

Liu, D. Q.; Li, Q. W.; Zhao, H. Z. Electrolyte-assisted hydrothermal synthesis of holey graphene films for all-solid-state supercapacitors. J. Mater. Chem. A 2018, 6, 11471–11478.

33

Li, P. P.; Jin, Z. Y.; Peng, L. L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. H. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv. Mater. 2018, 30, 1800124.

34

Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energy Environ. Sci. 2010, 3, 1238–1251.

35

Meng, Y. N.; Zhao, Y.; Hu, C. G.; Cheng, H. H.; Hu, Y.; Zhang, Z. P.; Shi G. Q.; Qu, L. T. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326–2331.

36

He, D.; Song, L.; Lv, L. X.; Zhang, Z. P.; Qu, L. T. Superelastic air-bubbled graphene foam monoliths as structural buffer for compressible high-capacity anode materials in lithium-ion batteries. Chem. Eng. J. 2018, 331, 704–711.

37

Wang, X. P.; Gao, J.; Cheng, Z. H.; Chen, N.; Qu, L. T. A responsive battery with controlled energy release. Angew. Chem., Int. Ed. 2016, 55, 14643–14647.

38

Shao, C. X.; Xu, T.; Gao, J.; Liang, Y.; Zhao, Y.; Qu, L. T. Flexible and integrated supercapacitor with tunable energy storage. Nanoscale 2017, 9, 12324–12329.

39

Ma, L. T.; Chen, S. M.; Pei, Z. X.; Huang, Y.; Liang, G. J.; Mo, F. N.; Yang, Q.; Su, J.; Gao, Y. H.; Zapien, J. A. et al. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 2018, 12, 1949–1958.

40

Ma, L. T.; Chen, S. M.; Wang, D. H.; Yang, Q.; Mo, F. N.; Liang, G. J.; Li, N.; Zhang, H. Y.; Zapien, J. A.; Zhi, C. Y. Super-stretchable zinc-air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 2019, 1803046.

41

Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn Zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018, 12, 3140–3148.

42

Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z. F.; Huang, Y.; Pei, Z. X.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(Ⅲ) rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.

43

Rong, Q. F.; Lei, W. W.; Huang J.; Liu, M. J. Low temperature tolerant organohydrogel electrolytes for flexible solid-State supercapacitors. Adv. Energy Mater. 2018, 8, 1801967.

44

Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.; Chen, N.; Zhang Z. P.; Qu, L. T. Moisture-activated torsional graphene-fiber motor. Adv. Mater. 2014, 26, 2909–2913.

45

Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

46

Jin, X. T.; Sun, G. Q.; Yang, H. S.; Zhang, G. F.; Xiao, Y. K.; Gao, J.; Zhang, Z. P.; Qu, L. T. A graphene oxide-mediated polyelectrolyte with high ion-conductivity for highly stretchable and self-healing all-solid-state supercapacitors. J. Mater. Chem. A. 2018, 6, 19463–19469.

47

Yu, M. H.; Zhang, Y. F.; Zeng, Y. X.; Balogun, M. S.; Mai, K. C.; Zhang, Z. S.; Lu, X. H.; Tong, Y. X. Water surface assisted synthesis of large-scale carbon nanotube film for high-performance and stretchable supercapacitors. Adv. Mater. 2014, 26, 4724–4729.

48

Haraguchi, K.; Farnworth, R.; Ohbayashi, A.; Takehisa, T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N, N-dimethylacrylamide) and clay. Macromolecules 2003, 36, 5732–5741.

49

Chen, Y. J.; Ozaki Y.; Czarnecki, M. A. Molecular structure and hydrogen bonding in pure liquid ethylene glycol and ethylene glycol–water mixtures studied using NIR spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 18694–18701.

50

Conrad, F. H.; Hill, E. F.; Ballman, E. A. Freezing points of the system ethylene glycol-methanol-water. Ind. Eng. Chem. 1940, 32, 542–543.

51

Spangler, J.; Davies, E. Freezing points, densities, and refractive indexes of system glycerol-ethylene glycol-water. Ind. Eng. Chem. Anal. Ed. 1943, 15, 96–99.

52

Hu, M. M.; Wang, J. Q.; Liu, J.; Zhang, J. H.; Ma, X.; Huang, Y. An intrinsically compressible and stretchable all-in-one configured supercapacitor. Chem. Commun. 2018, 54, 6200–6203.

53

Kumar, R. M.; Baskar, P.; Balamurugan, K.; Das, S.; Subramanian V. On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration. J. Phys. Chem. A 2012, 116, 4239–4247.

54

Wu, J. F.; Zhang, Q. E.; Wang, J. J.; Huang X. P.; Bai, H. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ. Sci. 2018, 11, 1280–1286.

55

Liu, N.; Su, Y. L.; Wang, Z. Q.; Wang, Z.; Xia, J. S.; Chen, Y.; Zhao, Z. G.; Li, Q. W.; Geng, F. X. Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors. ACS Nano 2017, 11, 7879–7888.

56

Hong, S.; Lee, J.; Do, K.; Lee, M.; Kim, J. H.; Lee, S.; Kim, D. H. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Adv. Funct. Mater. 2017, 27, 1704353.

57

Lim, Y.; Yoon, J.; Yun, J.; Kim, D.; Hong, S. Y.; Lee, S. J.; Zi, G.; Ha, J. S. Biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 2014, 8, 11639–11650.

58

Liu, Y. Q.; Zhang, B. B.; Xu, Q.; Hou, Y. Y.; Seyedin, S.; Qin, S.; Wallace, G. G.; Beirne, S.; Razal, J. M.; Chen, J. Development of graphene oxide/ polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 2018, 28, 1706592.

59

Yuan, L. Y.; Xiao, X.; Ding, T. P.; Zhong, J. W.; Zhang, X. H.; Shen, Y.; Hu, B.; Huang, Y. H.; Zhou, J.; Wang, Z. L. Paper-based supercapacitors for self-powered nanosystems. Angew. Chem., Int. Ed. 2012, 51, 4934–4938.

60

Li, S. H.; Huang, D. K.; Zhang, B. Y.; Xu, X. B.; Wang, M. K.; Yang, G.; Shen, Y. Flexible supercapacitors based on bacterial cellulose paper electrodes. Adv. Energy Mater. 2014, 4, 1301655.

61

Nyström, G.; Marais, A.; Karabulut, E.; Wågberg, L.; Cui Y.; Hamedi, M. M. Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nat. Commun. 2015, 6, 7259.

62

Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y.; Qu, L. T. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 2013, 25, 591–595.

63

Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008.

64

Xiao, K.; Ding, L. X.; Liu, G. X.; Chen, H. B.; Wang S. Q.; Wang, H. H. Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors. Adv. Mater. 2016, 28, 5997–6002.

65

Liang, X.; Nie, K. W.; Ding, X.; Dang, L. Q.; Sun, J.; Shi, F.; Xu, H.; Jiang, R. B.; He, X. X.; Liu, Z. H. et al. Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel–cobalt sulfide nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 10087–10095.

66

Sheng, L. Z.; Chang, J.; Jiang, L. L.; Jiang, Z. M.; Liu, Z.; Wei, T.; Fan, Z. J. Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 2018, 28, 1800597.

File
12274_2019_2382_MOESM6_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 January 2019
Revised: 20 February 2019
Accepted: 12 March 2019
Published: 29 March 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We acknowledge the financial support from the National Key R&D Program of China (Nos. 2017YFB1104300 and 2016YFA0200200), the National Natural Science Foundation of China (Nos. 51673026, 51433005, and 21774015), NSFC-MAECI (No. 51861135202), Beijing Municipal Science and Technology Commission (Nos. Z161100002116022 and Z161100002116029).

Return