Journal Home > Volume 12 , Issue 5

Lithium sulfur battery has been identified as a promising candidate for next storage devices attributing to ultrahigh energy density. However, non-conductive nature of sulfur and shuttling effect of soluble lithium polysulfides are intractable remaining problems. Herein, we develop a highly conductive nickel-rich Ni12P5/CNTs hybrid with high specific surface area as sulfur host to address these issues. The polar nature of Ni12P5/CNTs can significantly relieve the shuttle effect by means of a strong affinity towards lithium polysulfides and enhance kinetics of polysulfides redox reactions. In addition, the Ni12P5/CNTs with a superior conductivity (500 S·m-1) and high surface area of 395 m2·g-1 enables the effective electron transfer and expedited interfacial reaction. As a result, Ni12P5/CNTs hosted sulfur cathode exhibits high rate capability (784 mAh·g-1 at 4 C) and stable cycling performance with a negligible capacity fading of 0.057 % per cycle over 1, 000 cycles at 0.5 C. This work paves an alternative way for designing high performance sulfur cathodes involved metal-rich phosphides.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery

Show Author's information Xiao-Fei YuDong-Xu TianWen-Cui LiBin HeYu ZhangZhi-Yuan ChenAn-Hui Lu( )
State Key Laboratory of Fine Chemicals,School of Chemical Engineering, Dalian University of Technology,Dalian,116024,China;

Abstract

Lithium sulfur battery has been identified as a promising candidate for next storage devices attributing to ultrahigh energy density. However, non-conductive nature of sulfur and shuttling effect of soluble lithium polysulfides are intractable remaining problems. Herein, we develop a highly conductive nickel-rich Ni12P5/CNTs hybrid with high specific surface area as sulfur host to address these issues. The polar nature of Ni12P5/CNTs can significantly relieve the shuttle effect by means of a strong affinity towards lithium polysulfides and enhance kinetics of polysulfides redox reactions. In addition, the Ni12P5/CNTs with a superior conductivity (500 S·m-1) and high surface area of 395 m2·g-1 enables the effective electron transfer and expedited interfacial reaction. As a result, Ni12P5/CNTs hosted sulfur cathode exhibits high rate capability (784 mAh·g-1 at 4 C) and stable cycling performance with a negligible capacity fading of 0.057 % per cycle over 1, 000 cycles at 0.5 C. This work paves an alternative way for designing high performance sulfur cathodes involved metal-rich phosphides.

Keywords: carbon nanotube, lithium sulfur battery, high conductivity, Ni-rich phosphides, catalytic effect

References(38)

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

3

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. , Int. Ed. 2013, 52, 13186–13200.

4

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

5

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

6

Urbonaite, S.; Poux, T.; Novák, P. Progress towards commercially viable Li–S battery cells. Adv. Energy Mater. 2015, 5, 1500118.

7

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

8

Moon, S.; Jung, Y. H.; Jung, W. K.; Jung, D. S.; Choi, J. W.; Kim, D. K. Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries. Adv. Mater. 2013, 25, 6547–6553.

9

Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162.

10

Zhang, Z.; Wu, D. H.; Zhou, Z.; Li, G. R.; Liu, S.; Gao, X. P. Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery. Sci. China Mater. 2019, 62, 74–86, DOI: 10.1007/s40843-018-9292-7.

11

He, B.; Li, W. C.; Yang, C.; Wang, S. Q.; Lu, A. H. Incorporating sulfur inside the pores of carbons for advanced lithium–sulfur batteries: An electrolysis approach. ACS Nano 2016, 10, 1633–1639.

12

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 2014, 5, 3410.

13

Hu, G. J; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.

14

Zhao, M. Q.; Peng, H. J.; Tian, G. L.; Zhang, Q.; Huang, J. Q.; Cheng, X. B.; Tang, C.; Wei, F. Hierarchical vine-tree-like carbon nanotube architectures: In-situ CVD self-assembly and their use as robust scaffolds for lithium-sulfur batteries. Adv. Mater. 2014, 26, 7051–7058.

15

Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.

16

Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 2018, 11, 1238–1246.

17

Zhou, G. M.; Li, L.; Wang, D. W.; Shan, X. Y.; Pei, S. F.; Li, F.; Cheng, H. M. Flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries. Adv. Mater. 2015, 27, 641–647.

18

Sun, Q.; He, B.; Zhang, X. Q.; Lu, A. H. Engineering of hollow core–shell interlinked carbon spheres for highly stable lithium–sulfur batteries. ACS Nano 2015, 9, 8504–8513.

19

Zhang, L. H.; He, B.; Li, W. C.; Lu, A. H. Surface free energy-induced assembly to the synthesis of grid-like multicavity carbon spheres with high level in-cavity encapsulation for Lithium–Sulfur cathode. Adv. Energy Mater. 2017, 7, 1701518.

20

Li, D.; Han, F.; Wang, S.; Cheng, F.; Sun, Q.; Li, W. C. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for Lithium–Sulfur battery. ACS Appl. Mater. Interfaces 2013, 5, 2208–2213.

21

Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 127, 4399–4403.

22

Yang, C. P.; Yin, Y. X.; Ye, H; Jiang, K. C.; Zhang, J.; Guo, Y. G. Insight into the effect of boron doping on sulfur/carbon cathode in lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2014, 6, 8789–8795.

23

Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance Lithium–Sulfur batteries. ACS Nano 2013, 7, 5367–5375.

24

Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.

25

Gu, X. X.; Tong, C. J.; Lai, C.; Qiu, J. X.; Huang, X. X.; Yang, W. L.; Wen, B.; Liu, L. M.; Hou, Y. L.; Zhang, S. Q. A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J. Mater. Chem. A 2015, 3, 16670–16678.

26

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 2015, 6, 5682.

27

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 2013, 4, 1331.

28

Li, C. X.; Xi, Z. C.; Guo, D. X.; Chen, X. J.; Yin, L. W. Chemical immobilization effect on Lithium polysulfides for lithium–sulfur batteries. Small 2018, 14, 1701986.

29

Ma, L. B.; Chen, R. P.; Zhu, G. Y.; Hu, Y.; Wang, Y. R.; Chen, T.; Liu, J; Jin, Z. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 2017, 11, 7274–7283.

30

Wang, H. Q.; Zhang, W. C.; Xu, J. Z.; Guo, Z. P. Advances in polar materials for lithium–sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.

31

Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.

32

Xu, Y. Y.; Duan, S. B.; Li, H. Y.; Yang, M.; Wang, S. J.; Wang, X.; Wang, R. M. Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst. Nano Res. 2017, 10, 3103–3112.

33

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

34

Ji, P. H.; Shang, B.; Peng, Q. M.; Hu, X. B.; Wei, J. W. α-MoO3 spheres as effective polysulfides adsorbent for high sulfur content cathode in lithium-sulfur batteries. J. Power Sources 2018, 400, 572–579.

35

Balamurugan, J.; Thanh, T. D.; Kim, N. H.; Lee, J. H. Facile synthesis of 3D hierarchical N-doped graphene nanosheet/cobalt encapsulated carbon nanotubes for high energy density asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 9555–9565.

36

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2–TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

37

Xu, Z. L.; Lin, S. H.; Onofrio, N.; Zhou, L. M.; Shi, F. Y.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S. P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164.

38

He, B.; Li, W. C.; Zhang, Y.; Yu, X. F.; Zhang, B. S.; Li, F.; Lu, A. H. Paragenesis BN/CNTs hybrid as a monoclinic sulfur host for high rate and ultra-long life lithium–sulfur battery. J. Mater. Chem. A 2018, 6, 24194–24200.

File
12274_2019_2381_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 January 2019
Revised: 25 February 2019
Accepted: 12 March 2019
Published: 02 April 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors are grateful to the financial support by the National Natural Science Foundation of China (Nos. 21776041 and 21875028), and Cheung Kong Scholars Programme of China (No. T2015036).

Return