Journal Home > Volume 12 , Issue 5

The electrochemical reduction of nitrogen to ammonia is a promising way to produce ammonia at mild condition. The design and preparation of an efficient catalyst with high ammonia selectivity is critical for the real applications. In this work, a series of transition metal (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd) atoms supported by gt-C3N4 (TM/gt-C3N4) are investigated as electrocatalysts for the nitrogen reduction reaction (NRR) based on density functional calculations. It is found that Mo/gt-C3N4 with a limiting potential of -0.82 V is the best catalyst for standing-on adsorbed N2 cases. While for lying-on adsorbed N2 cases, V/gt-C3N4 with a limiting potential of -0.79 V is better than other materials. It is believed that this work provides several promising candidates for the non-noble metal electrocatalysts for NRR at mild condition.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction

Show Author's information Lifu Zhang1,2Wanghui Zhao2Wenhua Zhang2( )Jing Chen1,3Zhenpeng Hu1( )
School of Physics,Nankai University,Tianjin,300071,China;
Hefei National Laboratory for Physical Sciences at the Microscale,CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China,Hefei,230026,China;
Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan,030006,China;

Abstract

The electrochemical reduction of nitrogen to ammonia is a promising way to produce ammonia at mild condition. The design and preparation of an efficient catalyst with high ammonia selectivity is critical for the real applications. In this work, a series of transition metal (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, and Cd) atoms supported by gt-C3N4 (TM/gt-C3N4) are investigated as electrocatalysts for the nitrogen reduction reaction (NRR) based on density functional calculations. It is found that Mo/gt-C3N4 with a limiting potential of -0.82 V is the best catalyst for standing-on adsorbed N2 cases. While for lying-on adsorbed N2 cases, V/gt-C3N4 with a limiting potential of -0.79 V is better than other materials. It is believed that this work provides several promising candidates for the non-noble metal electrocatalysts for NRR at mild condition.

Keywords: single-atom catalyst, first-principles calculation, nitrogen reduction reaction, Gibbs free energy

References(61)

1

Smil, V. Detonator of the population explosion. Nature 1999, 400, 415.

2

Anantharaman, B.; Hazarika, S.; Ahmad, T.; Nagvekar, M.; Ariyapadi, S.; Gualy, R. Coal gasification technology for ammonia plants. In Proceedings of the Nitrogen & Syngas 2012 Conference, Houston, TX, USA, 2012, pp 1–10.

3

Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

4

Back, S.; Jung, Y. On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys. Chem. Chem. Phys. 2016, 18, 9161–9166.

5

Burgess, B. K.; Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 1996, 96, 2983–3012.

6

Jacobsen, C. J. H.; Dahl, S.; Hansen, P. L.; Törnqvist, E.; Jensen, L.; Topsøe, H.; Prip, D. V.; Møenshaug, P. B.; Chorkendorff, I. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J. Mol. Catal. A-Chem. 2000, 163, 19–26.

7

Ertl, G. Primary steps in catalytic synthesis of ammonia. J. Vac. Sci. Technol. A 1983, 1, 1247–1253.

8

Aparicio, L. M.; Dumesic, J. A. Ammonia synthesis kinetics: Surface chemistry, rate expressions, and kinetic analysis. Top. Catal. 1994, 1, 233–252.

9

Boudart, M. Ammonia synthesis: The bellwether reaction in heterogeneous catalysis. Top. Catal. 1994, 1, 405–414.

10

Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

11

Kamiya, K.; Tatebe, T.; Yamamura, S.; Iwase, K.; Harada, T.; Nakanishi, S. Selective reduction of nitrate by a local cell catalyst composed of metal-doped covalent triazine frameworks. ACS Catal. 2018, 8, 2693–2698.

12

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx–RGO Hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

13

Zhang, Y.; Qiu, W. B.; Ma, Y. J.; Luo, Y. L.; Tian, Z. Q.; Cui, G. W.; Xie, F. Y.; Chen, L.; Li, T. S.; Sun, X. P. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540–8544.

14

Wang, L.; Xia, M. K.; Wang, H.; Huang, K. F.; Qian, C. X.; Maravelias, C. T.; Ozin, G. A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074.

15

Nazemi, M.; Panikkanvalappil, S. R.; El-Sayed M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 2018, 49, 316–323.

16

Zhang, L.; Ji, X. Q.; Ren, X.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions. ACS Sustainable Chem. Eng. 2018, 6, 9550–9554.

17

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Morris Bullock, R.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel–driven nitrogen transformations. Science 2018, 360, 873.

18

Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 1999, 83, 1814–1817.

19

Dahl, S.; Törnqvist, E.; Chorkendorff, I. Dissociative adsorption of N2 on Ru(0001): A surface reaction totally dominated by steps. J. Catal. 2000, 192, 381–390.

20

Murakami, T.; Nishikiori, T.; Nohira, T.; Ito, Y. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J. Am. Chem. Soc. 2003, 125, 334–335.

21

Dahl, S.; Sehested, J.; Jacobsen, C. J. H.; Törnqvist, E.; Chorkendorff, I. Surface science based microkinetic analysis of ammonia synthesis over ruthenium catalysts. J. Catal. 2000, 192, 391–399.

22

Kojima, R.; Aika, K. I. Molybdenum nitride and carbide catalysts for ammonia synthesis. Appl. Catal. A-Gen. 2001, 219, 141–147.

23

Rod, T. H.; Logadottir, A.; Nørskov, J. K. Ammonia synthesis at low temperatures. J. Chem. Phys. 2000, 112, 5343–5347.

24

Hinnemann, B.; Nørskov, J. K. Modeling a central ligand in the nitrogenase FeMo cofactor. J. Am. Chem. Soc. 2003, 125, 1466–1467.

25

Logadottir, A.; Rod, T. H.; Nørskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. H. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 2001, 197, 229–231.

26

Logadóttir, Á.; Nørskov, J. K. Ammonia synthesis over a Ru(0001) surface studied by density functional calculations. J. Catal. 2003, 220, 273–279.

27

Hellman, A.; Honkala, K.; Remediakis, I. N.; Logadóttir, Á.; Carlsson, A.; Dahl, S.; Christensen, C. H.; Nørskov, J. K. Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles. Surf. Sci. 2009, 603, 1731–1739.

28

Hellman, A.; Baerends, E. J.; Biczysko, M.; Bligaard, T.; Christensen, C. H.; Clary, D. C.; Dahl, S.; Van Harrevelt, R.; Honkala, K.; Jónsson, H. et al. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. J. Phys. Chem. B 2006, 110, 17719–17735.

29

Liu, C. W.; Li, Q. Y.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Theoretical evaluation of possible 2D boron monolayer in N2 electrochemical conversion into ammonia. J. Phys. Chem. C 2018, 122, 25268–25273.

30

Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.

31

Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

32

Ling, C. Y.; Ouyang, Y. X.; Li, Q.; Bai, X. W.; Mao, X.; Du, A. J.; Wang, J. L. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 2018, 1800376, DOI: 10.1002/smtd.201800376.

33

Ling, C. Y.; Bai, X. W.; Ouyang, Y. X.; Du, A. J.; Wang, J. L. Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 2018, 122, 16842–16847.

34

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

35

Liang, S. X.; Hao, C.; Shi, Y. T. The power of single-atom catalysis. ChemCatChem 2015, 7, 2559–2567.

36

Li, X. F.; Li, Q. K.; Cheng, J.; Liu, L. L.; Yan, Q.; Wu, Y. C.; Zhang, X. H.; Wang, Z. Y.; Qiu, Q.; Luo, Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016, 138, 8706–8709.

37

Le, Y. Q.; Gu, J.; Tian, W. Q. Nitrogen-fixation catalyst based on graphene: Every part counts. Chem. Commun. 2014, 50, 13319–13322.

38

Dong, G. P.; Zhang, Y. H.; Pan, Q. W.; Qiu, J. R. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C-Photochem. Rev. 2014, 20, 33–50.

39

Ghosh, D.; Periyasamy, G.; Pandey, B.; Pati, S. K. Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets. J. Mater. Chem. C 2014, 2, 7943–7951.

40

Gao, D. Q.; Xu, Q.; Zhang, J.; Yang, Z. L.; Si, M. S.; Yan, Z. J.; Xue, D. S. Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets. Nanoscale 2014, 6, 2577–2581.

41

Xu, K.; Li, X. L.; Chen, P. Z.; Zhou, D.; Wu, C. Z.; Guo, Y. Q.; Zhang, L. D; Zhao, J. Y.; Wu, X. J.; Xie, Y. Hydrogen dangling bonds induce ferromagnetism in two-dimensional metal-free graphitic-C3N4 nanosheets. Chem. Sci. 2015, 6, 283–287.

42

Choudhuri, I.; Bhattacharyya, G.; Kumar, S.; Pathak, B. Metal-free half-metallicity in a high energy phase C-doped gh-C3N4 system: A high Curie temperature planar system. J. Mater. Chem. C 2016, 4, 11530–11539.

43

Zhang, Y.; Wang, Z.; Cao, J. X. Prediction of magnetic anisotropy of 5d transition metal-doped g-C3N4. J. Mater. Chem. C 2014, 2, 8817–8821.

44

Ghosh, D.; Periyasamy, G.; Pati, S. K. Transition metal embedded two-dimensional C3N4-graphene nanocomposite: A multifunctional material. J. Phys. Chem. C 2014, 118, 15487–15494.

45

Singh, A. R.; Montoya, J. H.; Rohr, B. A.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. Computational design of active site structures with improved transition-state scaling for ammonia synthesis. ACS Catal. 2018, 8, 4017–4024.

46

Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

47

Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180–2186.

48

Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. , Int. Ed. 2019, 58, 2321–2325.

49

Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3D transition metals. J. Chem. Phys. 2004, 120, 10240–10246.

50

Bond, G. C. Catalysis by Metals; Academic Press: London, 1962.

51

Ozaki, A.; Aika, K. Catalytic activation of dinitrogen. In Catalysis-Science and Technology. Anderson, J. R.; Boudart, M., Eds.; Springer-Verlag: Berlin, 1981; pp 87–158.

DOI
52

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

53

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

54

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

55

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

56

Vegge, T.; Rasmussen, T.; Leffers, T.; Pedersen, O. B.; Jacobsen, K. W. Atomistic simulations of cross-slip of jogged screw dislocations in copper. Philos. Mag. Lett. 2001, 81, 137–144.

57

Howalt, J. G.; Bligaard, T.; Rossmeisl, J.; Vegge, T. DFT based study of transition metal nano-clusters for electrochemical NH3 production. Phys. Chem. Chem. Phys. 2013, 15, 7785–7795.

58

Computational Chemistry Comparison and Benchmark Database. https://cccbdb.nist.gov/.

DOI
59

Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

60

Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.

61

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

File
12274_2019_2378_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2018
Revised: 22 February 2019
Accepted: 12 March 2019
Published: 29 March 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21773124 and 21473167), the Fundamental Research Funds for the Central Universities (No. WK3430000005), the Fok Ying Tung Education Foundation (No. 151008), and partially by the support of China Scholarship Council (CSC) (File No. 201706345015). The calculations were performed on the super-computing system in USTC-SCC, Tianjin-SCC and Guangzhou-SCC.

Return