Journal Home > Volume 12 , Issue 9

Oxygen vacancies implantation is an efficient way to adjust the physical and chemical properties of metal oxide nanomaterials to meet the requirements for particular applications. Through reasonable defects design, oxygen-deficient metal oxides with excellent optical and electrical properties are widely applied for environmental protection and energy uses. This review discusses recent advances in synthetic approaches of oxygen-deficient metal oxides and their applications in photocatalysis, electrocatalysis, and energy storage devices. The perspectives of oxygen-deficient metal oxides for increased energy demand and environmental sustainability are also examined.


menu
Abstract
Full text
Outline
About this article

Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment

Show Author's information Di Zu1,2,3Haiyang Wang2Sen Lin2Gang Ou2Hehe Wei2Shuqing Sun1,3( )Hui Wu2( )
Institute of Optical Imaging and SensingShenzhen Key Laboratory for Minimal Invasive Medical TechnologiesGraduate School at ShenzhenTsinghua UniversityShenzhen518055China
State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and EngineeringTsinghua UniversityBeijing100084China
Department of PhysicsTsinghua UniversityBeijing100084China

Abstract

Oxygen vacancies implantation is an efficient way to adjust the physical and chemical properties of metal oxide nanomaterials to meet the requirements for particular applications. Through reasonable defects design, oxygen-deficient metal oxides with excellent optical and electrical properties are widely applied for environmental protection and energy uses. This review discusses recent advances in synthetic approaches of oxygen-deficient metal oxides and their applications in photocatalysis, electrocatalysis, and energy storage devices. The perspectives of oxygen-deficient metal oxides for increased energy demand and environmental sustainability are also examined.

Keywords: oxygen vacancies, metal oxides, synthesis routes, energy and environment

References(113)

1

Tiba, S.; Omri, A. Literature survey on the relationships between energy, environment and economic growth. Renew. Sust. Energ. Rev. 2017, 69, 1129–1146.

2

Zhao, X.; Luo, D. K. Driving force of rising renewable energy in China: Environment, regulation and employment. Renew. Sust. Energ. Rev. 2017, 68, 48–56.

3

Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.

4

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

5

Mallouk, T. E. Water electrolysis: Divide and conquer. Nat. Chem. 2013, 5, 362–363.

6

Nong, S. Y.; Dong, W. J.; Yin, J. W.; Dong, B. W.; Lu, Y.; Yuan, X. T.; Wang, X.; Bu, K. J.; Chen, M. Y.; Jiang, S. D. et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 5719–5727.

7

You, J. B.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y.; Chang, W. H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81.

8

Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

9

Dou, Y. Y.; Wu, F.; Mao, C. Y.; Fang, L.; Guo, S. C.; Zhou, M. Enhanced photovoltaic performance of ZnO nanorod-based dye-sensitized solar cells by using Ga doped ZnO seed layer. J. Alloys Compd. 2015, 633, 408–414.

10

Tao, Y.; Zhu, Y. M.; Liu, C. J.; Yue, H. R.; Ji, J. Y.; Yuan, S. J.; Jiang, W.; Liang, B. A highly selective Cr/ZrO2 catalyst for the reverse water-gas shift reaction prepared from simulated Cr-containing wastewater by a photocatalytic deposition process with ZrO2. J. Environ. Chem. Eng. 2018, 6, 6761–6770.

11

Khraisheh, M.; Khazndar, A.; Al-Ghouti, M. A. Visible light-driven metal-oxide photocatalytic CO2 conversion. Int. J. Energy Res. 2015, 39, 1142–1152.

12

Li, L. H.; Deng, Z. X.; Xiao, J. X.; Yang, G. W. A metallic metal oxide (Ti5O9)- metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible- light photocatalytic activity. Nanotechnology 2015, 26, 255705.

13

He, J.; Zhang, P. P.; Liu, X. T.; Wu, S. S.; Hu, L. F.; Xu, L. Structural characteristics and spectral response of composite transition metal oxide photocatalytic materials. J Mater Sci 2016, 51, 7049–7072.

14

Jeong, G.; Kim, J. G.; Park, M. S.; Seo, M.; Hwang, S. M.; Kim, Y. U.; Kim, Y. J.; Kim, J. H.; Dou, S. X. Core–shell structured silicon nanoparticles@TiO2–x / carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 2014, 8, 2977–2985.

15

Xing, M. Y.; Zhang, J. L.; Qiu, B. C.; Tian, B. Z.; Anpo, M.; Che, M. A brown mesoporous TiO2-x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 2015, 11, 1920–1929.

16

Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. , Int. Ed. 2007, 46, 750–753.

17

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen- doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.

18

Xiao, X.; Peng, Z. H.; Chen, C.; Zhang, C. F.; Beidaghi, M.; Yang, Z. H.; Wu, N.; Huang, Y. H.; Miao, L.; Gogotsi, Y. et al. Freestanding MoO3-x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 2014, 9, 355–363.

19

Li, L.; Raji, A. R. O.; Tour, J. M. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv. Mater. 2013, 25, 6298–6302.

20

Wang, N. N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2–x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-Ion and Li-Ion batteries. Adv. Mater. 2016, 28, 4126–4133.

21

Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeisser, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530–17536.

22

Liu, H. Z.; Xia, G. L.; Zhang, R. R.; Jiang, P.; Chen, J. T.; Chen, Q. W. MOF- derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Adv. 2017, 7, 3686–3694.

23

Anantharaj, S.; Karthik, P. E.; Kundu, S. Self-assembled IrO2 nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities. J. Mater. Chem. A 2015, 3, 24463–24478.

24

Ye, Z. G.; Li, T.; Ma, G.; Dong, Y. H.; Zhou, X. L. Metal-Ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1704083.

25

Dong, H. Y.; Tang, P. P.; Zhang, S. Q.; Xiao, X. L.; Jin, C.; Gao, Y. C.; Yin, Y. H.; Li, B.; Yang, S. T. Excellent oxygen evolution reaction of NiO with a layered nanosphere structure as the cathode of lithium–oxygen batteries. RSC Adv. 2018, 8, 3357–3363.

26

Zhou, L. S.; Deng, B. L.; Jiang, Z. Q.; Jiang, Z. J. Shell thickness controlled core-shell Fe3O4@CoO nanocrystals as efficient bifunctional catalysts for the oxygen reduction and evolution reactions. Chem. Commun. 2019, 55, 525–528.

27

Liotta, L. F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B: Environ. 2010, 100, 403–412.

28

Zhang, Z. X.; Jiang, Z.; Shangguan, W. F. Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catal. Today 2016, 264, 270–278.

29

Liu, B.; Liu, J.; Ma, S. C.; Zhao, Z.; Chen, Y.; Gong, X. Q.; Song, W. Y.; Duan, A. J.; Jiang, G. Y. Mechanistic study of selective catalytic reduction of NO with NH3 on W-doped CeO2 catalysts: Unraveling the catalytic cycle and the role of oxygen vacancy. J. Phys. Chem. C 2016, 120, 2271–2283.

30

Yu, C. P.; Wang, Y.; Zheng, H. M.; Zhang, J. F.; Yang, W. F.; Shu, X.; Qin, Y. Q.; Cui, J. W.; Zhang, Y.; Wu, Y. C. Supercapacitive performance of homogeneous Co3O4/TiO2 nanotube arrays enhanced by carbon layer and oxygen vacancies. J. Solid State Electr. 2017, 21, 1069–1078.

31

Zhang, Y. J.; Sun, C. T.; Lu, P.; Li, K. Y.; Song, S. Y.; Xue, D. F. Crystallization design of MnO2 towards better supercapacitance. CrystEngComm 2012, 14, 5892–5897.

32

Arciga-Duran, E.; Meas, Y.; Pérez-Bueno, J. J.; Ballesteros, J. C.; Trejo, G. Effect of oxygen vacancies in electrodeposited NiO towards the oxygen evolution reaction: Role of Ni-Glycine complexes. Electrochim. Acta 2018, 268, 49–58.

33

Gruption, A. A. F.; Lassali, T. A. F. Effect of the Co3O4 introduction in the pseudocapacitive behavior of IrO2-based electrode. J. Electrochem. Soc. 2001, 148, A1015-A1022.

34

Dahlman, C. J.; Tan, Y. Z.; Marcus, M. A.; Milliron, D. J. Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J. Am. Chem. Soc. 2015, 137, 9160–9166.

35

Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3–x. Nat. Mater. 2017, 16, 454–460.

36

Han, X. X.; Huang, J.; Jing, X. X.; Yang, D. Y.; Lin, H.; Wang, Z. G.; Li, P.; Chen, Y. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-Ⅱ biowindow. ACS Nano 2018, 12, 4545–4555.

37

Lin, Z. D.; Li, N.; Chen, Z.; Fu, P. The effect of Ni doping concentration on the gas sensing properties of Ni doped SnO2. Sens. Actuators B Chem. 2017, 239, 501–510.

38

Shao, W.; Wang, H.; Zhang, X. D. Elemental doping for optimizing photocatalysis in semiconductors. Dalton Trans. 2018, 47, 12642–12646.

39

Wang, J.; Chen, R. S.; Xiang, L.; Komarneni, S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018, 44, 7357–7377.

40

Sarkar, A.; Khan, G. G. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. Nanoscale 2019, 11, 3414–3444.

41

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

42

Wang, B.; Shen, S. H.; Mao, S. S. Black TiO2 for solar hydrogen conversion. J. Mater. 2017, 3, 96–111.

43

Lu, Q. L.; Zhao, S. X.; Chen, C. K.; Wang, X.; Deng, Y. F.; Nan, C. W. A novel pseudocapacitance mechanism of elm seed-like mesoporous MoO3-x nanosheets as electrodes for supercapacitors. J. Mater. Chem. A 2016, 4, 14560–14566.

44

Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.

45

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

46

Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

47

Liu, Y. Y.; Wang, H. T.; Lin, D. C.; Liu, C.; Hsu, P. C.; Liu, W.; Chen, W.; Cui, Y. Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts. Energy Environ. Sci. 2015, 8, 1719–1724.

48

Zhu, Y. L.; Zhou, W.; Yu, J.; Chen, Y. B.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691–1697.

49

Zhai, T.; Xie, S. L.; Yu, M. H.; Fang, P. P.; Liang, C. L.; Lu, X. H.; Tong, Y. X. Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 2014, 8, 255–263.

50

Chen, S. Q.; Li, L. P.; Hu, W. B.; Huang, X. S.; Li, Q.; Xu, Y. S.; Zuo, Y.; Li, G. S. Anchoring high-concentration oxygen vacancies at interfaces of CeO2-x/Cu toward enhanced activity for preferential CO oxidation. ACS Appl. Mater. Interfaces 2015, 7, 22999–23007.

51

Yuan, K. P.; Cao, Q.; Lu, H. L.; Zhong, M.; Zheng, X. Z.; Chen, H. Y.; Wang, T.; Delaunay, J. J.; Luo, W.; Zhang, L. W. et al. Oxygen-deficient WO3-x@TiO2-x core–shell nanosheets for efficient photoelectrochemical oxidation of neutral water solutions. J. Mater. Chem. A 2017, 5, 14697– 14706.

52

Su, T.; Yang, Y. L.; Na, Y.; Fan, R. Q.; Li, L.; Wei, L. G.; Yang, B.; Cao, W. W. An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 3754–3763.

53

Wang, N. N.; Yue, J.; Chen, L.; Qian, Y. T.; Yang, J. Hydrogenated TiO2 branches coated Mn3O4 nanorods as an advanced anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 10348–10355.

54

Wang, G. M.; Ling, Y. C.; Wang, H. Y.; Yang, X. Y.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 2012, 5, 6180–6187.

55

Zhang, C. Y.; Xie, Y. H.; Ma, J. H.; Hu, J.; Zhang, C. C. A composite catalyst of reduced black TiO2-x/CNT: A highly efficient counter electrode for ZnO-based dye-sensitized solar cells. Chem. Commun. 2015, 51, 17459– 17462.

56

Xu, Q. C.; Jiang, H.; Zhang, H. X.; Jiang, H. B.; Li, C. Z. Phosphorus- driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction. Electrochim. Acta 2018, 259, 962–967.

57

Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.

58

Zhang, K.; Wang, L. Y.; Kim, J. K.; Ma, M.; Veerappan, G.; Lee, C. L.; Kong, K. J.; Lee, H.; Park, J. H. An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy Environ. Sci. 2016, 9, 499–503.

59

Sinhamahapatra, A.; Jeon, J. P.; Yu, J. S. A new approach to prepare highly active and stable black Titania for visible light-assisted hydrogen production. Energy Environ. Sci 2015, 8, 3539–3544.

60

Sinhamahapatra, A.; Jeon, J. P.; Kang, J.; Han, B.; Yu, J. S. Oxygen-deficient zirconia (ZrO2–x): A new material for solar light absorption. Sci. Rep. 2016, 6, 27218.

61

Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan, D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M. et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci 2013, 6, 3007–3014.

62

Zhao, W. L.; Zhao, W.; Zhu, G. L.; Lin, T. Q.; Xu, F. F.; Huang, F. Q. Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. Dalton Trans. 2016, 45, 3888–3894.

63

Zhao, Z.; Tan, H. Q.; Zhao, H. F.; Lv, Y.; Zhou, L. J.; Song, Y. J.; Sun, Z. C. Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 2014, 50, 2755–2757.

64

Han, D.; Jiang, B. L.; Feng, J.; Yin, Y. D.; Wang, W. S. Photocatalytic self- doped SnO2–x nanocrystals drive visible-light-responsive color switching. Angew. Chem. , Int. Ed. 2017, 56, 7792–7796.

65

Chen, H. H.; Yang, M.; Tao, S.; Chen, G. W. Oxygen vacancy enhanced catalytic activity of reduced Co3O4 towards p-nitrophenol reduction. Appl. Catal. B: Environ. 2017, 209, 648–656.

66

Sun, H. Y.; Zhao, Y. Y.; Mølhave, K.; Zhang, M. W.; Zhang, J. D. Simultaneous modulation of surface composition, oxygen vacancies and assembly in hierarchical Co3O4 mesoporous nanostructures for lithium storage and electrocatalytic oxygen evolution. Nanoscale 2017, 9, 14431–14441.

67

Xiang, K.; Xu, Z. C.; Qu, T. T.; Tian, Z. F.; Zhang, Y.; Wang, Y. Z.; Xie, M. J.; Guo, X. K.; Ding, W. P.; Guo, X. F. Two dimensional oxygen-vacancy-rich Co3O4 nanosheets with excellent supercapacitor performances. Chem. Commun. 2017, 53, 12410–12413.

68

Wajid Shah, M.; Zhu, Y. Q.; Fan, X. Y.; Zhao, J.; Li, Y. X.; Asim, S.; Wang, C. Y. Facile synthesis of defective TiO2–x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis. Sci. Rep. 2015, 5, 15804.

69

Zou, X. X.; Liu, J. K.; Su, J.; Zuo, F.; Chen, J. S.; Feng, P. Y. Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. Chem. —Eur. J. 2013, 19, 2866– 2873.

70

Tominaka, S.; Tsujimoto, Y.; Matsushita, Y.; Yamaura, K. Synthesis of nanostructured reduced titanium oxide: Crystal structure transformation maintaining nanomorphology. Angew. Chem. , Int. Ed. 2011, 50, 7418– 7421.

71

Zhang, Z. H.; Hedhili, M. N.; Zhu, H. B.; Wang, P. Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys. Chem. Chem. Phys. 2013, 15, 15637– 15644.

72

Meekins, B. H.; Kamat, P. V. Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano 2009, 3, 3437–3446.

73

Wang, G. M.; Yang, Y.; Ling, Y. C.; Wang, H. Y.; Lu, X. H.; Pu, Y. C.; Zhang, J. Z.; Tong, Y. X.; Li, Y. An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. J. Mater. Chem. A 2016, 4, 2849–2855.

74

Lee, S.; Nam, G.; Sun, J.; Lee, J. S.; Lee, H. W.; Chen, W.; Cho, J.; Cui, Y. Enhanced intrinsic catalytic activity of λ-MnO2 by electrochemical tuning and oxygen vacancy generation. Angew. Chem. , Int. Ed. 2016, 55, 8599– 8604.

75

Liu, N.; Häublein, V.; Zhou, X. M.; Venkatesan, U.; Hartmann, M.; Mačković, M.; Nakajima, T.; Spiecker, E.; Osvet, A.; Frey, L. et al. "Black" TiO2 nanotubes formed by high-energy proton implantation show noble-metal- co-catalyst free photocatalytic H2-evolution. Nano Lett. 2015, 15, 6815– 6820.

76

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. , Int. Ed. 2016, 55, 5277–5281.

77

Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

78

Xu, J. J.; Dong, W. J.; Song, C. S.; Tang, Y. F.; Zhao, W. L.; Hong, Z. L.; Huang, F. Q. Black rutile (Sn, Ti)O2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage. J. Mater. Chem. A 2016, 4, 15698–15704.

79

Zhou, Y.; Liu, Y. C.; Liu, P. W.; Zhang, W. Y.; Xing, M. Y.; Zhang, J. L. A facile approach to further improve the substitution of nitrogen into reduced TiO2-x with an enhanced photocatalytic activity. Appl. Catal. B: Environ. 2015, 170, 66–73.

80

Wei, Z. H.; Zhao, T. S.; Zhu, X. B.; Tan, P. MnO2–x nanosheets on stainless steel felt as a carbon-and binder-free cathode for non-aqueous lithium-oxygen batteries. J. Power Sources 2016, 306, 724–732.

81

Fan, C. Y.; Chen, C.; Wang, J.; Fu, X. X.; Ren, Z. M.; Qian, G. D.; Wang, Z. Y. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci. Rep. 2015, 5, 11712.

82

Ullattil, S. G.; Periyat, P. A 'one pot' gel combustion strategy towards Ti3+ self-doped 'black' anatase TiO2-x solar photocatalyst. J. Mater. Chem. A 2016, 4, 5854–5858.

83

Ou, G.; Li, D. K.; Pan, W.; Zhang, Q. H.; Xu, B.; Gu, L.; Nan, C. W.; Wu, H. Arc-melting to narrow the bandgap of oxide semiconductors. Adv. Mater. 2015, 27, 2589–2594.

84

Wei, H. H.; Ma, X. G.; Gu, L.; Li, J. Q.; Si, W. J.; Ou, G.; Yu, W.; Zhao, C. S.; Li, J. Y.; Song, M. J. et al. Aerodynamic levitated laser annealing method to defective titanium dioxide with enhanced photocatalytic performance. Nano Res. 2016, 9, 3839–3847.

85

Yu, W.; Ou, G.; Si, W. J.; Qi, L. H.; Wu, H. Defective SrTiO3 synthesized by arc-melting. Chem. Commun. 2015, 51, 15685–15688.

86

Wang, J.; Xia, Y.; Zhao, H. Y.; Wang, G. F.; Xiang, L.; Xu, J. L.; Komarneni, S. Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Appl. Catal. B: Environ. 2017, 206, 406–416.

87

Li, M. Y.; Hu, Y.; Xie, S. L.; Huang, Y. C.; Tong, Y. X.; Lu, X. H. Heterostructured ZnO/SnO2–x nanoparticles for efficient photocatalytic hydrogen production. Chem. Commun. 2014, 50, 4341–4343.

88

Zhang, J. Q.; Xing, Z. P.; Cui, J. Y.; Li, Z. Z.; Tan, S. Y.; Yin, J. W.; Zou, J. L.; Zhu, Q.; Zhou, W. C, N co-doped porous TiO2 hollow sphere visible light photocatalysts for efficient removal of highly toxic phenolic pollutants. Dalton Trans. 2018, 47, 4877–4884.

89

Li, G. S.; Lian, Z. C.; Li, X.; Xu, Y. Y.; Wang, W. C.; Zhang, D. Q.; Tian, F. H.; Li, H. X. Ionothermal synthesis of black Ti3+-doped single-crystal TiO2 as an active photocatalyst for pollutant degradation and H2 generation. J. Mater. Chem. A 2015, 3, 3748–3756.

90

He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Solar Energy Mater. Solar Cells 2015, 137, 175–184.

91

Xing, M. Y.; Zhou, Y.; Dong, C. Y.; Cai, L. J.; Zeng, L. X.; Shen, B.; Pan, L. H.; Dong, C. C.; Chai, Y.; Zhang, J. L. et al. Modulation of the reduction potential of TiO2–x by fluorination for efficient and selective CH4 generation from CO2 photoreduction. Nano Lett. 2018, 18, 3384–3390.

92

Yin, G. H.; Huang, X. Y.; Chen, T. Y.; Zhao, W.; Bi, Q. Y.; Xu, J.; Han, Y. F.; Huang, F. Q. Hydrogenated blue titania for efficient solar to chemical conversions: Preparation, characterization, and reaction mechanism of CO2 reduction. ACS Catal. 2018, 8, 1009–1017.

93

Li, W. J.; Da, P. M.; Zhang, Y. Y.; Wang, Y. C.; Lin, X.; Gong, X. G.; Zheng, G. F. WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano 2014, 8, 11770–11777.

94

Luo, Z.; Miao, R.; Huan, T. D.; Mosa, I. M.; Poyraz, A. S.; Zhong, W.; Cloud, J. E.; Kriz, D. A.; Thanneeru, S.; He, J. K. et al. Mesoporous MoO3–x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv. Energy Mater. 2016, 6, 1600528.

95

Chen, J. D.; Yu, D. N.; Liao, W. S.; Zheng, M. D.; Xiao, L. F.; Zhu, H.; Zhang, M.; Du, M. L.; Yao, J. M. WO3–x Nanoplates grown on carbon nanofibers for an efficient electrocatalytic hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 18132–18139.

96

Li, L.; Zhang, T.; Yan, J. Q.; Cai, X. D.; Liu, S. Z. P doped MoO3–x nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small 2017, 13, 1700441.

97

Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3–x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

98

Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem. , Int. Ed. 2013, 52, 2474–2477.

99

Li, L.; Feng, X. H.; Nie, Y.; Chen, S. G.; Shi, F.; Xiong, K.; Ding, W.; Qi, X. Q.; Hu, J. S.; Wei, Z. D. et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2. ACS Catal. 2015, 5, 4825–4832.

100

Ma, D. T.; Li, Y. L.; Mi, H. W.; Luo, S.; Zhang, P. X.; Lin, Z. Q.; Li, J. Q.; Zhang, H. Robust SnO2–x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem. , Int. Ed. 2018, 57, 8901–8905.

101

Li, Y. F.; Wang, D. D.; An, Q. Y.; Ren, B.; Rong, Y. G.; Yao, Y. Flexible electrode for long-life rechargeable sodium-ion batteries: Effect of oxygen vacancy in MoO3-x. J. Mater. Chem. A 2016, 4, 5402–5405.

102

Lim, S. P.; Pandikumar, A.; Lim, H. N.; Ramaraj, R.; Huang, N. M. Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N, S-Co-doped-TiO2 photoanode. Sci. Rep. 2015, 5, 11922.

103

Elbohy, H.; Reza, K. M.; Abdulkarim, S.; Qiao, Q. Q. Creation of oxygen vacancies to activate WO3 for higher efficiency dye-sensitized solar cells. Sustainable Energy Fuels 2018, 2, 403–412.

104

Zhou, H. W.; Shi, Y. T.; Wang, L.; Zhang, H.; Zhao, C. Y.; Hagfeldt, A.; Ma, T. L. Notable catalytic activity of oxygen-vacancy-rich WO2.72 nanorod bundles as counter electrodes for dye-sensitized solar cells. Chem. Commun. 2013, 49, 7626–7628.

105

Yang, S. H.; Liu, Y. Y.; Hao, Y. F.; Yang, X. P.; Goddard Ⅲ, W. A.; Zhang, X. L.; Cao, B. Q. Oxygen-Vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 2018, 5, 1700659.

106

Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

107

Huang, S. Y.; Zhu, X. F.; Cheng, B.; Yu, J. G.; Jiang, C. J. Flexible nickel foam decorated with Pt/NiO nanoflakes with oxygen vacancies for enhanced catalytic formaldehyde oxidation at room temperature. Environ. Sci. : Nano 2017, 4, 2215–2224.

108

Wang, Z.; Wang, W. Z.; Zhang, L.; Jiang, D. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature. Catal. Sci. Technol. 2016, 6, 3845–3853.

109

Nguyen, L.; Zhang, S. R.; Yoon, S. J.; Tao, F. Preferential oxidation of CO in H2 on pure Co3O4-x and Pt/Co3O4-x. ChemCatChem 2015, 7, 2346–2353.

110

Liu, H. H.; Wang, Y.; Jia, A. P.; Wang, S. Y.; Luo, M. F.; Lu, J. Q. Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: A reaction at Pt–CeO2 interface. Appl. Surf. Sci. 2014, 314, 725–734.

111

Wang, L.; Yu, Y. B.; He, H.; Zhang, Y.; Qin, X. B.; Wang, B. Y. Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation. Sci. Rep. 2017, 7, 12845.

112

Lin, X. T.; Li, S. J.; He, H.; Wu, Z.; Wu, J. L.; Chen, L. M.; Ye, D. Q.; Fu, M. L. Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Appl. Catal. B: Environ. 2018, 223, 91–102.

113

Ma, C. J.; Wen, Y. Y.; Yue, Q. Q.; Li, A. Q.; Fu, J. L.; Zhang, N. W.; Gai, H. J.; Zheng, J. B.; Chen, B. H. Oxygen-vacancy-promoted catalytic wet air oxidation of phenol from MnOx–CeO2. RSC Adv. 2017, 7, 27079–27088.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2018
Revised: 05 March 2019
Accepted: 11 March 2019
Published: 02 April 2019
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This study was supported by the National Basic Research of China (No. 2015CB932500), and National Natural Science Foundations of China (Nos. 51788104, 51661135025 and 51522207). S. S. thanks financial support from Innovation Foundation for Science and Technology of Shenzhen (Nos. JCYJ20170307153548350 and JCYJ20170817172150505).

Return