Journal Home > Volume 12 , Issue 9

Ultrathin ZnO nanostructures present interesting two-dimensional (2D) graphene-like structure in contrast to wurtzite structure in bulk ZnO. Growth on Au(111) has been regarded as a well-established route to the 2D ZnO layers while controlled growth of uniform ZnO nanostructures remains as a challenge. Here, reactive deposition of Zn in O3 and NO2 was employed, which is investigated by scanning tunneling microscopy and X-ray photoelectron spectroscopy (XPS). We demonstrate that uniform ZnO monolayer nanoislands and films can be obtained on Au(111) using O3 and uniform ZnO bilayer nanoislands and films form on Au(111) using NO2, respectively. Formation of atomic oxygen overlayers on Au(111) via exposure to O3 is critical to the formation of uniform ZnO monolayer nanostructures atop. Near ambient pressure XPS studies revealed that nearly full hydroxylation occurs on monolayer ZnO structures upon exposure to near ambient pressure water vapor or atomic hydrogen species, while partial surface hydroxylation happens on bilayer ZnO under the same gaseous exposure conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlled growth of uniform two-dimensional ZnO overlayers on Au(111) and surface hydroxylation

Show Author's information Hao Wu1,2Qiang Fu1( )Yifan Li1,2Yi Cui3Rui Wang3Nan Su1,2Le Lin1Aiyi Dong1Yanxiao Ning1Fan Yang1Xinhe Bao1,2
State Key Lab of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefei2300263China
Vacuum Interconnected Nanotech WorkstationSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhou215123China

Abstract

Ultrathin ZnO nanostructures present interesting two-dimensional (2D) graphene-like structure in contrast to wurtzite structure in bulk ZnO. Growth on Au(111) has been regarded as a well-established route to the 2D ZnO layers while controlled growth of uniform ZnO nanostructures remains as a challenge. Here, reactive deposition of Zn in O3 and NO2 was employed, which is investigated by scanning tunneling microscopy and X-ray photoelectron spectroscopy (XPS). We demonstrate that uniform ZnO monolayer nanoislands and films can be obtained on Au(111) using O3 and uniform ZnO bilayer nanoislands and films form on Au(111) using NO2, respectively. Formation of atomic oxygen overlayers on Au(111) via exposure to O3 is critical to the formation of uniform ZnO monolayer nanostructures atop. Near ambient pressure XPS studies revealed that nearly full hydroxylation occurs on monolayer ZnO structures upon exposure to near ambient pressure water vapor or atomic hydrogen species, while partial surface hydroxylation happens on bilayer ZnO under the same gaseous exposure conditions.

Keywords: two-dimensional materials, scanning tunneling microscopy (STM), graphene-like ZnO, hydroxylation, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS)

References(59)

1

Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20-30.

2

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.

3

Freeman, C. L.; Claeyssens, F.; Allan, N. L.; Harding, J. H. Graphitic nanofilms as precursors to wurtzite films: Theory. Phys. Rev. Lett. 2006, 96, 066102.

4

Heard, C. J.; Čejka, J.; Opanasenko, M.; Nachtigall, P.; Centi, G.; Perathoner, S. 2D oxide nanomaterials to address the energy transition and catalysis. Adv. Mater. 2019, 31, 1801712.

5

Wang, H.; Feng, H. B.; Li, J. H. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 2014, 10, 2165-2181.

6

Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133-4156.

7

Zhu, C. Z.; Du, D.; Lin, Y. H. Graphene and graphene-like 2D materials for optical biosensing and bioimaging: A review. 2D Mater 2015, 2, 032004.

8

Caffio, M.; Atrei, A.; Cortigiani, B.; Rovida, G. STM study of the nanostructures prepared by deposition of NiO on Ag(001). J. Phys. : Condens. Matter 2006, 18, 2379-2384.

9

Großer, S.; Hagendorf, C.; Neddermeyer, H.; Widdra, W. The growth of thin NiO films on Ag(001) studied by scanning tunneling microscopy and spectroscopy. Surf. Interface Anal. 2008, 40, 1741-1746.

10

Khan, N. A.; Matranga, C. Nucleation and growth of Fe and FeO nanoparticles and films on Au(111). Surf. Sci. 2008, 602, 932-942.

11

Steurer, W.; Surnev, S.; Fortunelli, A.; Netzer, F. P. Scanning tunneling microscopy imaging of NiO(100)(1×1) islands embedded in Ag(100). Surf. Sci. 2012, 606, 803-807.

12

Fu, Q.; Bao, X. L. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842-1874.

13

Freund, H. J.; Pacchioni, G. Oxide ultra-thin films on metals: New materials for the design of supported metal catalysts. Chem. Soc. Rev. 2008, 37, 2224-2242.

14

Surnev, S.; Fortunelli, A.; Netzer, F. P. Structure-property relationship and chemical aspects of oxide-metal hybrid nanostructures. Chem. Rev. 2013, 113, 4314-4372.

15

Wang, Z. L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. : Condens. Matter 2004, 16, R829-R858.

16

Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

17

Ryu, Y.; Lee, T. S.; Lubguban, J. A.; White, H. W.; Kim, B. J.; Park, Y. S.; Youn, C. J. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett. 2006, 88, 241108.

18

Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R. et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065-1068.

19

Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893-897.

20

Ratnasamy, C.; Wagner, J. P. Water gas shift catalysis. Catal. Rev. 2009, 51, 325-440.

21

Kang, J.; Zhang, Y.; Wen, Y. H.; Zheng, J. C.; Zhu, Z. Z. First-principles study on the structural and electronic properties of ultrathin ZnO nanofilms. Phys. Lett. A 2010, 374, 1054-1058.

22

Claeyssens, F.; Freeman, C. L.; Allan, N. L.; Sun, Y.; Ashfold, M. N. R.; Harding, J. H. Growth of ZnO thin films-experiment and theory. J. Mater. Chem. 2005, 15, 139-148.

23

Tosoni, S.; Li, C. Q.; Schlexer, P.; Pacchioni, G. CO adsorption on graphite-like ZnO bilayers supported on Cu(111), Ag(111), and Au(111) surfaces. J. Phys. Chem. C 2017, 121, 27453-27461.

24

Weirum, G.; Barcaro, G.; Fortunelli, A.; Weber, F.; Schennach, R.; Surnev, S.; Netzer, F. P. Growth and surface structure of zinc oxide layers on a Pd(111) surface. J. Phys. Chem. C 2010, 114, 15432-15439.

25

Liu, B. H.; McBriarty, M. E.; Bedzyk, M. J.; Shaikhutdinov, S.; Freund, H. J. Structural transformations of zinc oxide layers on Pt(111). J. Phys. Chem. C 2014, 118, 28725-28729.

26

Pan, Q.; Liu, B. H.; McBriarty, M. E.; Martynova, Y.; Groot, I. M. N.; Wang, S.; Bedzyk, M. J.; Shaikhutdinov, S.; Freund, H. J. Reactivity of ultra-thin ZnO films supported by Ag(111) and Cu(111): A comparison to ZnO/Pt(111). Catal. Lett. 2014, 144, 648-655.

27

Stavale, F.; Pascua, L.; Nilius, N.; Freund, H. J. Morphology and luminescence of ZnO films grown on a Au(111) support. J. Phys. Chem. C 2013, 117, 10552-10557.

28

Hong, H. K.; Jo, J.; Hwang, D.; Lee, J.; Kim, N. Y.; Son, S.; Kim, J. H.; Jin, M. J.; Jun, Y. C.; Erni, R. et al. Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene. Nano Lett. 2017, 17, 120-127.

29

Quang, H. T.; Bachmatiuk, A.; Dianat, A.; Ortmann, F.; Zhao, J.; Warner, J. H.; Eckert, J.; Cunniberti, G.; Rümmeli, M. H. In situ observations of free-standing graphene-like mono- and bilayer ZnO membranes. ACS Nano 2015, 9, 11408-11413.

30

Ta, H. Q.; Zhao, L.; Pohl, D.; Pang, J. B.; Trzebicka, B.; Rellinghaus, B.; Pribat, D.; Gemming, T.; Liu, Z. F.; Bachmatiuk, A. et al. Graphene-like ZnO: A mini review. Crystals 2016, 6, 100.

31

Wu, C.; Castell, M. R. Ultrathin oxide films on Au(111) substrates. In Oxide Materials at the Two-Dimensional Limit; Netzer, F. P.; Fortunelli, A., Eds.; Springer: Cham, 2016; pp 149-168.

DOI
32

Tumino, F.; Casari, C. S.; Passoni, M.; Bottani, C. E.; Bassi, A. L. Pulsed laser deposition of two-dimensional ZnO nanocrystals on Au(111): Growth, surface structure and electronic properties. Nanotechnology 2016, 27, 475703.

33

Deng, X. Y.; Yao, K.; Sun, K. J.; Li, W. X.; Lee, J.; Matranga, C. Growth of single- and bilayer ZnO on Au(111) and interaction with copper. J. Phys. Chem. C 2013, 117, 11211-11218.

34

Zhao, X. F.; Chen, H.; Wu, H.; Wang, R.; Cui, Y.; Fu, Q.; Yang, F.; Bao, X, H. Growth of ordered ZnO structures on Au(111) and Cu(111). Acta Phys. -Chim. Sin. 2018, 34, 1373-1380.

35

Chen, H.; Lin, L.; Li, Y. F.; Wang, R.; Gong, Z. M.; Cui, Y.; Li, Y. S.; Liu, Y.; Zhao, X. F.; Huang, W. G. et al. CO and H2 Activation over g-ZnO Layers and w-ZnO(0001). ACS Catal. 2019, 9, 1373-1382.

36

Tusche, C.; Meyerheim, H. L.; Kirschner, J. Observation of depolarized ZnO(0001) monolayers: Formation of unreconstructed planar sheets. Phys. Rev. Lett. 2007, 99, 026102.

37

Shiotari, A.; Liu, B. H.; Jaekel, S.; Grill, L.; Shaikhutdinov, S.; Freund, H. J.; Wolf, M.; Kumagai, T. Local characterization of ultrathin ZnO layers on Ag(111) by scanning tunneling microscopy and atomic force microscopy. J. Phys. Chem. C 2014, 118, 27428-27435.

38

Andersen, M.; Yu, X. J.; Kick, M.; Wang, Y. M.; Wöll, C.; Reuter, K. Infrared reflection-absorption spectroscopy and density functional theory investigations of ultrathin ZnO films formed on Ag(111). J. Phys. Chem. C 2018, 122, 4963-4971.

39

Nilius, N. Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf. Sci. Rep. 2009, 64, 595-659.

40

Jeong, H.; Bae, J.; Han, J. W.; Lee, H. Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 2017, 7, 7097-7105.

41

Zhao, Z. J.; Wu, T. F.; Xiong, C. Y.; Sun, G. D.; Mu, R. T.; Zeng, L.; Gong, J. L. Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/γ-Al2O3 catalysts with improved stability. Angew. Chem., Int. Ed. 2018, 57, 6791-6795.

42

Wu, H.; Ren, P. J.; Zhao, P.; Gong, Z. M.; Wen, X. D.; Cui, Y.; Fu, Q.; Bao, X. H. Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres. Nano Res. 2019, 12, 85-90.

43

Parker, D. H.; Bartram, M. E.; Koel, B. E. Study of high coverages of atomic oxygen on the Pt(111) surface. Surf. Sci. 1989, 217, 489-510.

44

Banse, B. A.; Koel, B. E. Interaction of oxygen with Pd(111): High effective O2 pressure conditions by using nitrogen dioxide. Surf. Sci. 1990, 232, 275-285.

45

Légaré, P.; Hilaire, L.; Sotto, M.; Maire, G. Interaction of oxygen with Au surfaces: A LEED, AES and ELS study. Surf. Sci. 1980, 91, 175-186.

46

Pireaux, J. J.; Chtaïb, M.; Delrue, J. P.; Thiry, P. A.; Liehr, M.; Caudano, R. Electron spectroscopic characterization of oxygen adsorption on gold surfaces: I. Substrate impurity effects on molecular oxygen adsorption in ultra high vacuum. Surf. Sci. 1984, 141, 211-220.

47

Bartram, M. E.; Koel, B. E. The molecular adsorption of NO2 and the formation of N2O3 on Au(111). Surf. Sci. 1989, 213, 137-156.

48

Lazaga, M. A.; Wickham, D. T.; Parker, D. H.; Kastanas, G. N.; Koel, B. E. Reactivity of oxygen adatoms on the Au(111) surface. In Catalytic Selective Oxidation; Ted Oyama, S.; Hightower, J. H., Eds.; American Chemical Society: Washington, DC, USA, 1993; pp 90-109.

DOI
49

Saliba, N.; Parker, D. H.; Koel, B. E. Adsorption of oxygen on Au(111) by exposure to ozone. Surf. Sci. 1998, 410, 270-282.

50

Moulder, J. F.; Chastain, J.; King, R. C. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corp: Eden Prairie, MN, USA, 1995.

51

Liu, B. H.; Groot, I. M. N.; Pan, Q. S.; Shaikhutdinov, S.; Freund, H. J. Ultrathin Zn and ZnO films on Cu(111) as model catalysts. Appl. Catal. A: Gen 2017, 548, 16-23.

52

Lee, J.; Sorescu, D. C.; Deng, X. Y. Tunable lattice constant and band gap of single- and few-layer ZnO. J. Phys. Chem. Lett. 2016, 7, 1335-1340.

53

Kumagai, T.; Liu, S.; Shiotari, A.; Baugh, D.; Shaikhutdinov, S.; Wolf, M. Local electronic structure, work function, and line defect dynamics of ultrathin epitaxial ZnO layers on a Ag(111) surface. J. Phys. : Condens. Matter 2016, 28, 494003.

54

Voigtländer, B.; Meyer, G.; Amer, N. M. Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy. Phys. Rev. B 1991, 44, 10354-10357.

55

Dulub, O.; Meyer, B.; Diebold, U. Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface. Phys. Rev. Lett. 2005, 95, 136101.

56

Newberg, J. T.; Goodwin, C.; Arble, C.; Khalifa, Y.; Boscoboinik, J. A.; Rani, S. ZnO(101̅0) surface hydroxylation under ambient water vapor. J. Phys. Chem. B 2018, 122, 472-478.

57

Liu, B. H.; Boscoboinik, J. A.; Cui, Y.; Shaikhutdinov, S.; Freund, H. J. Stabilization of ultrathin zinc oxide films on metals: Reconstruction versus Hydroxylation. J. Phys. Chem. C 2015, 119, 7842-7847.

58

Mun, B. S.; Liu, Z.; Motin, M. A.; Roy, P. C.; Kim, C. M. In situ observation of H2 dissociation on the ZnO (0001) surface under high pressure of hydrogen using ambient-pressure XPS. Int. J. Hydrogen Energy 2018, 43, 8655-8661.

59

Deng, X. Y.; Sorescu, D. C.; Lee, J. D2O interaction with planar ZnO(0001) bilayer supported on Au(111): Structures, energetics and influence of hydroxyls. J. Phys. Chem. C 2016, 120, 8157-8166.

File
12274_2019_2373_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 January 2019
Revised: 26 February 2019
Accepted: 05 March 2019
Published: 26 March 2019
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21825203, 91545204, 21688102, and 21621063), the National Key Research and Development Program of China (Nos. 2016YFA0200200 and 2017YFB0602205), and Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020000). The authors thank the support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO). The fruitful discussion with Yuemin Wang in Karlsruhe Institute of Technology (KIT) is highly appreciated.

Return