Journal Home > Volume 12 , Issue 5

In catalysis, tuning the structural composition of the metal alloy is known as an efficient way to optimize the catalytic activity. This work presents the synthesis of compositional segregated six-armed PtCu nanostars via a facile solvothermal method and their distinct composition-structure-dependent performances in electrooxidation processes. The alloy is shown to have a unique six arms with a Cu-rich dodecahedral core, mainly composed of {110} facets and exhibit superior catalytic activity toward alcohols electrooxidation compared to the hollow counterpart where Cu was selectively etched. Density functional theory (DFT) calculations suggest that the formation of hydroxyl intermediate (OH*) is crucial to detoxify CO poisoning during the electrooxidation processes. The addition of Cu is found to effectively adjust the d band location of the alloy catalyst and thus enhance the formation of *OH intermediate from water splitting, which decreases the coverage of *CO intermediate. Our work demonstrates that the unique compositional anisotropy in alloy catalyst may boost their applications in electrocatalysis and provides a methodology for the design of this type catalyst.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Exposing Cu-rich {110} active facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation

Show Author's information Liping Huang1,§Wei Zhang2,4,§Peng Li1( )Yongbo Song1Hongting Sheng1Yuanxin Du1Yang-Gang Wang2( )Yuen Wu3Xun Hong3Yanhuai Ding4Xiaoyou Yuan1Manzhou Zhu1( )
Department of Chemistry and Center for Atomic Engineering of Advanced Materials,Anhui University,Hefei,230601,China;
Department of Chemistry and Shenzhen Grubbs Institute,Southern University of Science and Technology,Shenzhen,518055,China;
Center of Advanced Nanocatalysis (CAN) and Department of Chemistry,University of Science and Technology of China,Hefei,230026,China;
College of Civil Engineering & Mechanics,Xiangtan University,Xiangtan,411105,China;

§ Liping Huang and Wei Zhang contributed equally to this work.

Abstract

In catalysis, tuning the structural composition of the metal alloy is known as an efficient way to optimize the catalytic activity. This work presents the synthesis of compositional segregated six-armed PtCu nanostars via a facile solvothermal method and their distinct composition-structure-dependent performances in electrooxidation processes. The alloy is shown to have a unique six arms with a Cu-rich dodecahedral core, mainly composed of {110} facets and exhibit superior catalytic activity toward alcohols electrooxidation compared to the hollow counterpart where Cu was selectively etched. Density functional theory (DFT) calculations suggest that the formation of hydroxyl intermediate (OH*) is crucial to detoxify CO poisoning during the electrooxidation processes. The addition of Cu is found to effectively adjust the d band location of the alloy catalyst and thus enhance the formation of *OH intermediate from water splitting, which decreases the coverage of *CO intermediate. Our work demonstrates that the unique compositional anisotropy in alloy catalyst may boost their applications in electrocatalysis and provides a methodology for the design of this type catalyst.

Keywords: methanol oxidation, etching, element-specific, crystal facet, PtCu nanostars

References(63)

1

Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056-3078.

2

Zhao, X.; Zhang, J.; Wang, L. J.; Li, H. X.; Liu, Z. L.; Chen, W. Ultrathin PtPdCu nanowires fused porous architecture with 3D molecular accessibility: An active and durable platform for methanol oxidation. ACS Appl. Mater. Interfaces 2015, 7, 26333-26339.

3

Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Highly open rhombic dodecahedral PtCu nanoframes. Chem. Commun. 2015, 51, 9722-9725.

4

Du, X. W.; Luo, S. P.; Du, H. Y.; Tang, M.; Huang, X. D.; Shen, P. K. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A 2016, 4, 1579-1585.

5

Luo, S. P.; Shen, P. K. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 2017, 11, 11946-11953.

6

Rossmeisl, J.; Ferrin, P.; Tritsaris, G. A.; Nilekar, A. U.; Koh, S.; Bae, S. E.; Brankovic, S. R.; Strasser, P.; Mavrikakis, M. Bifunctional anode catalysts for direct methanol fuel cells. Energy Environ. Sci. 2012, 5, 8335-8342.

7

Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765-771.

8

Maya-Cornejo, J.; Carrera-Cerritos, R.; Sebastián, D.; Ledesma-García, J.; Arriaga, L. G.; Aricò, A. S.; Baglio, V. PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell. Int. J. Hydrogen Energy 2017, 42, 27919-27928.

9

Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.

10

Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594-11598.

11

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

12

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241-247.

13

Kang, Y. J.; Yang, P. D.; Markovic, N. M.; Stamenkovic, V. R. Shaping electrocatalysis through tailored nanomaterials. Nano Today 2016, 11, 587-600.

14

Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741

15

Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.

16

Wang, P. T.; Jiang, K. Z.; Wang, G. M.; Yao, J. L.; Huang, X. Q. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12859-12863.

17

Wang, W. Y.; Wang, D. S.; Liu, X. W.; Peng, Q.; Li, Y. D. Pt-Ni nanodendrites with high hydrogenation activity. Chem. Commun. 2013, 49, 2903-2905.

18

Suntivich, J.; Xu, Z. C.; Carlton, C. E.; Kim, J.; Han, B. H.; Lee, S. W.; Bonnet, N.; Marzari, N.; Allard, L. F.; Gasteiger, H. A. et al. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 2013, 135, 7985-7991.

19

Pei, J. J.; Mao, J. J.; Liang, X.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Ultrathin Pt-Zn nanowires: High-performance catalysts for electrooxidation of methanol and formic acid. ACS Sustainable Chem. Eng. 2018, 6, 77-81.

20

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934-13937.

21

Xue, S. F.; Deng, W. T.; Yang, F.; Yang, J. L.; Amiinu, I. S.; He, D. P.; Tang, H. L.; Mu, S. C. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation. ACS Catal. 2018, 8, 7578-7584.

22

Park, J.; Kanti Kabiraz, M.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. ACS Nano 2017, 11, 10844-10851.

23

Zhang, N.; Feng, Y. G.; Zhu, X.; Guo, S. J.; Guo, J.; Huang, X. Q. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Adv. Mater. 2017, 29, 1603774.

24

Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

25

He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y. E.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

26

Chen, S.; Su, H. Y.; Wang, Y. C.; Wu, W. L.; Zeng, J. Size-controlled synthesis of platinum-copper hierarchical trigonal bipyramid nanoframes. Angew. Chem., Int. Ed. 2015, 54, 108-113.

27

Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Vertex-type engineering of Pt-Cu-Rh heterogeneous nanocages for highly efficient ethanol electrooxidation. Adv. Mater. 2018, 30, 1804074.

28

Liu, T. Y.; Wang, K.; Yuan, Q.; Shen, Z. B.; Wang, Y.; Zhang, Q. H.; Wang, X. Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction. Nanoscale 2017, 9, 2963-2968.

29

Feng, Y. G.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. 3D platinum-lead nanowire networks as highly efficient ethylene glycol oxidation electro-catalysts. Small 2016, 12, 4464-4470.

30

Xu, H.; Liu, C. F.; Song, P. P.; Wang, J.; Gao, F.; Zhang, Y. P.; Shiraishi, Y.; Di, J.; Du, Y. K. Ethylene glycol electrooxidation based on pentangle-like PtCu nanocatalysts. Chem. —Asian J. 2018, 13, 626-630.

31

Ottoni, C. A; Ramos, C. E. D.; de Souza, R. F. B.; da Silva, S. G.; Spinace, E. V.; Neto, A. O. Glycerol and ethanol oxidation in alkaline medium using PtCu/C electrocatalysts. Int. J. Electrochem. Sci. 2018, 13, 1893-1904.

32

Bai, S. X.; Shao, Q.; Wang, P. T.; Dai, Q. G.; Wang, X. Y.; Huang, X. Q. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles. J. Am. Chem. Soc. 2017, 139, 6827-6830.

33

Dos Reis, R. G. C. S.; Colmati, F. Electrochemical alcohol oxidation: A comparative study of the behavior of methanol, ethanol, propanol, and butanol on carbon-supported PtSn, PtCu, and Pt nanoparticles. J. Solid State Electrochem. 2016, 20, 2559-2567.

34

Fan, Y.; Liu, P. F.; Zhang, Z. W.; Cui, Y.; Zhang, Y. Three-dimensional hierarchical porous platinum-copper alloy networks with enhanced catalytic activity towards methanol and ethanol electro-oxidation. J. Power Sources 2015, 296, 282-289.

35

Chen, Y. G.; Yu, Z. J.; Chen, Z.; Shen, R. G.; Wang, Y.; Cao, X.; Peng, Q.; Li, Y. D. Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Res. 2016, 9, 2632-2640.

36

Shi, W. W.; Chen, X. Q.; Xu, S. Y.; Cui, J. B.; Wang, L. Y. Highly efficient PdCu3 nanocatalysts for Suzuki-Miyaura reaction. Nano Res. 2016, 9, 2912-2920.

37

Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum-copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755-765.

38

Gao, D. W.; Li, S. N.; Song, G. L.; Zha, P. F.; Li, C. C.; Wei, Q.; Lv, Y. P.; Chen, G. Z. One-pot synthesis of Pt−Cu bimetallic nanocrystals with different structures and their enhanced electrocatalytic properties. Nano Res. 2018, 11, 2612-2624.

39

Xia, T. Y.; Liu, J. L.; Wang, S. G.; Wang, C.; Sun, Y.; Wang, R. M. Nanomagnetic CoPt truncated octahedrons: Facile synthesis, superior electrocatalytic activity and stability for methanol oxidation. Sci. China Mater. 2016, 60, 57-67.

40

Zhang, Y.; Zhang, J. F.; Chen, Z. L.; Liu, Y. W.; Zhang, M. M.; Han, X. P.; Zhong, C.; Hu, W. B.; Deng, Y. D. One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. Sci. China Mater. 2018, 61, 697-706.

41

Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712-8717.

42

Cao, J. Y.; Du, Y. Y.; Dong, M. M.; Chen, Z. D.; Xu, J. Template-free synthesis of chain-like PtCu nanowires and their superior performance for oxygen reduction and methanol oxidation reaction. J. Alloys Compd. 2018, 747, 124-130.

43

Chen, B.; Cheng, D. J.; Zhu, J. Q. Synthesis of PtCu nanowires in nonaqueous solvent with enhanced activity and stability for oxygen reduction reaction. J. Power Sources 2014, 267, 380-387.

44

Liu, X. W.; Wang, W. Y.; Li, H.; Li, L. S.; Zhou, G. B.; Yu, R.; Wang, D. S.; Li, Y. D. One-pot protocol for bimetallic Pt/Cu hexapod concave nanocrystals with enhanced electrocatalytic activity. Sci. Rep. 2013, 3, 1404.

45

Li, H. H.; Fu, Q. Q.; Xu, L.; Ma, S. Y.; Zheng, Y. R.; Liu, X. J.; Yu, S. H. Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ. Sci. 2017, 10, 1751-1756.

46

Liao, Y.; Yu, G.; Zhang, Y.; Guo, T. T.; Chang, F. F.; Zhong, C. J. Composition-tunable PtCu alloy nanowires and electrocatalytic synergy for methanol oxidation reaction. J. Phys. Chem. C 2016, 120, 10476-10484.

47

Yan, X. X.; Chen, Y. F.; Deng, S. H.; Yang, Y. F.; Huang, Z. N.; Ge, C. W.; Xu, L.; Sun, D. M.; Fu, G. T.; Tang, Y. W. In situ integration of ultrathin PtCu nanowires with reduced graphene oxide nanosheets for efficient electrocatalytic oxygen reduction. Chem. —Eur. J. 2017, 23, 16871-16876.

48

Zhang, N.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. Screw thread-like platinum-copper nanowires bounded with high-index facets for efficient electrocatalysis. Nano Lett. 2016, 16, 5037-5043.

49

Fu, G. T.; Yan, X. X.; Cui, Z. M.; Sun, D. M.; Xu, L.; Tang, Y. W.; Goodenough, J. B.; Lee, J. M. Catalytic activities for methanol oxidation on ultrathin CuPt3 wavy nanowires with/without smart polymer. Chem. Sci. 2016, 7, 5414-5420.

50

Yu, X. F.; Wang, D. S.; Peng, Q.; Li, Y. D. High performance electrocatalyst: Pt-Cu hollow nanocrystals. Chem. Commun. 2011, 47, 8094-8096.

51

Gan, L.; Cui, C. H.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502-1506.

52

Xia, X. H.; Xie, S. F.; Liu, M. C.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xia, Y. N. On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proc. Natl. Acad. Sci. USA 2013, 110, 6669-6673.

53

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

54

Niu, Z. Q.; Becknell, N.; Yu, Y.; Kim, D.; Chen, C.; Kornienko, N.; Somorjai, G. A.; Yang, P. D. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 2016, 15, 1188-1194.

55

Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem., Int. Ed. 2011, 50, 7850-7854.

56

Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748-3751.

57

Housmans, T. H. M.; Wonders, A. H.; Koper, M. T. M. Structure sensitivity of methanol electrooxidation pathways on platinum: An on-line electrochemical mass spectrometry study. J. Phys. Chem. B 2006, 110, 10021-10031.

58

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886-17892.

59

Ferrin, P.; Mavrikakis, M. Structure sensitivity of methanol electrooxidation on transition metals. J. Am. Chem. Soc. 2009, 131, 14381-14389.

60

Xia, X. H.; Iwasita, T.; Ge, F.; Vielstich, W. Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum. Electrochim. Acta 1996, 41, 711-718.

61

Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. Mechanism and kinetics of the electrochemical co adlayer oxidation on Pt(111). J. Electroanal. Chem. 2002, 524-525, 242-251.

62

Tripković, A. V.; Popović, K. Đ.; Momčilović, J. D.; Dražić, D. M. Kinetic and mechanistic study of methanol oxidation on a Pt(110) surface in alkaline media. Electrochim. Acta 1998, 44, 1135-1145.

63

Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part Ⅲ. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 1975, 60, 275-283.

File
12274_2019_2367_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 January 2019
Revised: 28 February 2019
Accepted: 03 March 2019
Published: 21 March 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We thank the support from National Natural Science Foundation of China (Nos. 21571001, 21372006, 21631001, and U1532141), the Ministry of Education, the Education Department of Anhui Province, and 211 Project of Anhui University. Y. G. W. gratefully acknowledges the financial support from Southern University of Science and Technolgoy (SUSTech). The calculations were performed by using the Taiyi high-performance supercomputer cluster located at SUSTech.

Return