Journal Home > Volume 12 , Issue 6

Lanthanide-based luminescent anti-counterfeiting materials are widely used in various kinds of products. However, the emission color of traditional lanthanide-based luminescent materials usually remains nearly unaltered upon different excitation lights, which may only work for single-level anti-counterfeiting. Herein, the NaYbF4: 2%Er@NaYF4 core/shell nanoplates (NPs) with "chameleon-like" optical behavior are developed. These NPs display single-band red or green downshifting (DS) emission upon excitation at 377 or 490 nm, respectively. Upon 980 nm excitation, the color of upconversion (UC) emission can be finely tuned from green to yellow, and to red with increasing the excitation power density from 0.1 to 4.0 W/cm2. The proposed materials readily integrate the advantages of excitation wavelength-dependent DS single-band emissions and sensitive excitation power-dependent UC multicolor emissions in one and the same material, which has never been reported before. Particularly, the proposed NPs exhibit excellent performance as security labels on trademark tag and security ink on painting, thus revealing the great potential of these lanthanide-doped fluoride NPs in multilevel anti-counterfeiting applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

"Chameleon-like" optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications

Show Author's information Wenwu YouDatao Tu( )Renfu LiWei ZhengXueyuan Chen( )
CAS Key Laboratory of Design and Assembly of Functional Nanostructures,and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences,Fuzhou,350002,China;

Abstract

Lanthanide-based luminescent anti-counterfeiting materials are widely used in various kinds of products. However, the emission color of traditional lanthanide-based luminescent materials usually remains nearly unaltered upon different excitation lights, which may only work for single-level anti-counterfeiting. Herein, the NaYbF4: 2%Er@NaYF4 core/shell nanoplates (NPs) with "chameleon-like" optical behavior are developed. These NPs display single-band red or green downshifting (DS) emission upon excitation at 377 or 490 nm, respectively. Upon 980 nm excitation, the color of upconversion (UC) emission can be finely tuned from green to yellow, and to red with increasing the excitation power density from 0.1 to 4.0 W/cm2. The proposed materials readily integrate the advantages of excitation wavelength-dependent DS single-band emissions and sensitive excitation power-dependent UC multicolor emissions in one and the same material, which has never been reported before. Particularly, the proposed NPs exhibit excellent performance as security labels on trademark tag and security ink on painting, thus revealing the great potential of these lanthanide-doped fluoride NPs in multilevel anti-counterfeiting applications.

Keywords: upconversion, downshifting, lanthanide-doped, chameleon-like, multilevel anti-counterfeiting

References(43)

1

Kumar, P.; Singh, S.; Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-counterfeiting applications. Nanoscale 2016, 8, 14297-14340.

2

Liu, Y. L.; Ai, K. L.; Lu, L. H. Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting. Nanoscale 2011, 3, 4804-4810.

3

Kaczmarek, A. M.; Liu, Y. Y.; Wang, C. H.; Laforce, B.; Vincze, L.; Van Der Voort, P.; Van Hecke, K.; Van Deun, R. Lanthanide "chameleon" multistage anti-counterfeit materials. Adv. Funct. Mater. 2017, 27, 1700258.

4

Zhang, Y. H.; Zhang, L. X.; Deng, R. R.; Tian, J.; Zong, Y.; Jin, D. Y.; Liu, X. G. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 2014, 136, 4893-4896.

5

Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378-1385.

6

Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725-10815.

7

Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379-1415.

8

Wang, Y.; Zheng, K. Z.; Song, S. Y.; Fan, D. Y.; Zhang, H. J.; Liu, X. G. Remote manipulation of upconversion luminescence. Chem. Soc. Rev. 2018, 47, 6473-6485.

9

Zhao, J. B.; Jin, D. Y.; Schartner, E. P.; Lu, Y. Q.; Liu, Y. J.; Zvyagin, A. V.; Zhang, L. X.; Dawes, J. M.; Xi, P.; Piper, J. A. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 2013, 8, 729-734.

10

Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Luo, W. Q.; Chen, X. Y. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266-3271.

11

Tu, D. T.; Zheng, W.; Huang, P.; Chen, X. Y. Europium-activated luminescent nanoprobes: From fundamentals to bioapplications. Coordin. Chem. Rev. 2019, 378, 104-120.

12

Bünzli, J. C. G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53-61.

13

Peng, D. F.; Ju, Q.; Chen, X.; Ma, R. H.; Chen, B.; Bai, G. X.; Hao, J. H.; Qiao, X. S.; Fan, X. P.; Wang, F. Lanthanide-doped energy cascade nanoparticles: Full spectrum emission by single wavelength excitation. Chem. Mater. 2015, 27, 3115-3120.

14

Tan, M. L.; Del Rosal, B.; Zhang, Y. Q.; Martín Rodríguez, E.; Hu, J.; Zhou, Z. G.; Fan, R. W.; Ortgies, D. H.; Fernández, N.; Chaves-Coira, I. et al. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window. Nanoscale 2018, 10, 17771-17780.

15

Kraft, M.; Würth, C.; Muhr, V.; Hirsch, T.; Resch-Genger, U. Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Res. 2018, 11, 6360-6374.

16

Li, L.Y.; Zhao, N. J.; Fu, L. M.; Zhou, J.; Ai, X. C.; Zhang, J. P. Temperature modulation of concentration quenching in lanthanide-doped nanoparticles for enhanced upconversion luminescence. Nano Res. 2018, 11, 2104-2115.

17

Li, Y. F.; Zhang, Y. M.; Wang, W. P. Phototriggered targeting of nanocarriers for drug delivery. Nano Res. 2018, 11, 5424-5438.

18

Liu, Y.; Tu, D. T.; Zheng, W.; Lu, L. Y.; You, W. W.; Zhou, S. Y.; Huang, P.; Li, R. F.; Chen, X. Y. A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Res. 2018, 11, 3164-3174.

19

Wang, Y. Q.; Wang, J.; Ma, Q. Q.; Li, Z. H.; Yuan, Q. Recent progress in background-free latent fingerprint imaging. Nano Res. 2018, 11, 5499-5518.

20

Jung, T.; Jo, H. L.; Nam, S. H.; Yoo, B.; Cho, Y.; Kim, J.; Kim, H. M.; Hyeon, T.; Suh, Y. D.; Lee, H. et al. The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4: Yb3+, E3+. Phys. Chem. Chem. Phys. 2015, 17, 13201-13205.

21

Tang, Z. J.; Liu, Q.; Li, J.; Wu, X. F.; Zhan, S. P.; Nie, G. Z.; Hu, J. S.; Hu, S. G.; Xi, Z. F.; Wu, S. B. et al. Tuning the photothermal effect of NaYF4: Yb3+, Er3+ upconversion luminescent crystals through La3+ ion doping. J. Lumin. 2019, 206, 21-26.

22

Xu, J. T.; Yang, P. P.; Sun, M. D.; Bi, H. T.; Liu, B.; Yang, D.; Gai, S. L.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 2017, 11, 4133-4144.

23

You, W. W.; Tu, D. T.; Zheng, W.; Huang, P.; Chen, X. Y. Lanthanide-doped disordered crystals: Site symmetry and optical properties. J. Lumin. 2018, 201, 255-264.

24

Yang, D. M.; Ma, P. A.; Hou, Z. Y.; Cheng, Z. Y.; Li, C. X.; Lin, J. Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem. Soc. Rev. 2015, 44, 1416-1448.

25

Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343-2389.

26

Dai, Y. L.; Xiao, H. H.; Liu, J. H.; Yuan, Q. H.; Ma, P. A.; Yang, D. M.; Li, C. X.; Cheng, Z. Y.; Hou, Z. Y.; Yang, P. P. et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920-18929.

27

Zhang, C.; Yang, L.; Zhao, J.; Liu, B. H.; Han, M. Y.; Zhang, Z. P. White-light emission from an integrated upconversion nanostructure: Toward multicolor displays modulated by laser power. Angew. Chem. , Int. Ed. 2015, 54, 11531-11535.

28

Chen, B.; Liu, Y.; Xiao, Y.; Chen, X.; Li, Y.; Li, M. Y.; Qiao, X. S.; Fan, X. P.; Wang, F. Amplifying excitation-power sensitivity of photon upconversion in a NaYbF4: Ho nanostructure for direct visualization of electromagnetic hotspots. J. Phys. Chem. Lett. 2016, 7, 4916-4921.

29

Liu, J.; Rijckaert, H.; Zeng, M.; Haustraete, K.; Laforce, B.; Vincze, L.; Van Driessche, I.; Kaczmarek, A. M.; Van Deun, R. Simultaneously excited downshifting/upconversion luminescence from lanthanide-doped core/shell fluoride nanoparticles for multimode anticounterfeiting. Adv. Funct. Mater. 2018, 28, 1707365.

30

Schäfer, H.; Ptacek, P.; Voss, B.; Eickmeier, H.; Nordmann, J; Haase, M. Synthesis and characterization of upconversion fluorescent Yb3+, Er3+ doped RbY2F7 nano- and microcrystals. Cryst. Growth Des. 2010, 10, 2202-2208.

31

Ju, Q.; Tu, D. T.; Liu, Y. S.; Li, R. F.; Zhu, H. M.; Chen, J. C.; Chen, Z.; Huang, M. D.; Chen, X. Y. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J. Am. Chem. Soc. 2012, 134, 1323-1330.

32

You, W. W.; Tu, D. T.; Zheng, W.; Shang, X. Y.; Song, X. R.; Zhou, S. Y.; Liu, Y.; Li, R. F.; Chen, X. Y. Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications. Nanoscale 2018, 10, 11477-11484.

33

Ma, C. G.; Brik, M. G.; Liu, D. X.; Feng, B.; Tian, Y.; Suchocki, A. Energy level schemes of fN electronic configurations for the di-, tri-, and tetravalent lanthanides and actinides in a free state. J. Lumin. 2016, 170, 369-374.

34

Wang, J.; Deng, R. R.; MacDonald, M. A.; Chen, B. L.; Yuan, J. K.; Wang, F.; Chi, D. Z.; Hor, T. S. A.; Zhang, P.; Liu, G. K. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 2014, 13, 157-162.

35

Wang, L. L.; Xue, X. J.; Chen, H.; Zhao, D.; Qin, W. P. . Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation. Chem. Phys. Lett. 2010, 485, 183-186.

36

Chen, X. Y.; Ma, E.; Liu, G. K. Energy levels and optical spectroscopy of Er3+ in Gd2O3 nanocrystals. J. Phys. Chem. C 2007, 111, 10404-10411.

37

Aarts, L.; van der Ende, B. M.; Meijerink, A. Downconversion for solar cells in NaYF4: Er, Yb. J. Appl. Phys. 2009, 106, 023522.

38

Pollnau, M.; Gamelin, D. R.; Lüthi, S. R.; Güdel, H. U.; Hehlen, M. P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337-3346.

39

Fan, S. H.; Wang, S. K.; Yu, L.; Sun, H. T.; Gao, G. J.; Hu, L. L. Ion-redistribution induced efficient upconversion in β-NaYF4: 20%Yb3+, 2%Er3+ microcrystals with well controlled morphology and size. Opt. Express 2017, 25, 180-190.

40

Wang, T.; Yu, H.; Siu, C. K.; Qiu, J. B.; Xu, X. H.; Yu, S. F. White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods. ACS Photonics 2017, 4, 1539-1543.

41

Berry, M. T.; May, P. S. Disputed mechanism for NIR-to-red upconversion luminescence in NaYF4: Yb3+, Er3+. J. Phys. Chem. A 2015, 119, 9805-9811.

42

Shao, W.; Lim, C. K.; Li, Q.; Swihart, M. T.; Prasad, P. N. Dramatic enhancement of quantum cutting in lanthanide-doped nanocrystals photosensitized with an aggregation-induced enhanced emission dye. Nano Lett. 2018, 18, 4922-4926.

43

Thoma, R. E.; Brunton, G. D.; Penneman, R. A.; Keenan, T. K. Equilibrium relations and crystal structure of lithium fluorolanthanate phases. Inorg. Chem. 1970, 9, 1096-1101.

File
12274_2019_2366_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 December 2018
Revised: 26 February 2019
Accepted: 02 March 2019
Published: 29 May 2019
Issue date: June 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is supported by the National Natural Foundation of China (NSFC) (Nos. 21771185, 51672272, 21650110462, and U1805252), the Strategic Priority Research Program of the CAS (No. XDB20000000), the CAS/SAFEA International Partnership Program for Creative Research Teams, and Natural Science Foundation of Fujian Province (No. 2017I0018).

Return