Journal Home > Volume 12 , Issue 5

The mixed-dimensional integration of two-dimensional (2D) materials with non-2D materials can give rise to prominent advances in performance or function. To date, the mixed-dimensional one-dimensional (1D)/2D heterostructures have been fabricated using various physical assembly approaches. However, direct epitaxial growth method which has notable advantages in preparing large-scale products and obtaining perfect interfaces is rarely investigated. Herein, we demonstrate for the first time the direct synthesis of the 1D/2D mixed-dimensional heterostructures by sequential vapor-phase growth of Sb2Se3 nanowires on WS2 monolayers. X-ray diffraction (XRD) pattern and Raman spectrum confirm the composition of the Sb2Se3/WS2 heterostructures. Transmission electron microscope (TEM) measurement demonstrates high quality of the heterostructures. Electrical transport characterization reveals that Sb2Se3 nanowire exhibits p-type characteristic and that WS2 monolayer exhibits n-type behavior, and that the p-n diode from 1D/2D mixed-dimensional Sb2Se3/WS2 heterostructure possesses obvious current rectification behavior. Optoelectronic measurements of the heterostructures show apparent photovoltaic response with an open-circuit voltage of 0.19 V, photoresponsivity of 1.51 A/W (Vds = 5 V) and fast response time of less than 8 ms. The van der Waals epitaxial growth mode of Sb2Se3 nanowires on WS2 monolayers is verified by stripping the Sb2Se3 nanowire from the heterostructures using tape. Together, the direct van der Waals epitaxy opens a facile pathway to 1D/2D mixed-dimensional heterostructures for functional electronic and optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions

Show Author's information Guangzhuang Sun1,§Bo Li2,§Jia Li1Zhengwei Zhang1Huifang Ma1Peng Chen1Bei Zhao1Ruixia Wu1Weiqi Dang1Xiangdong Yang1Xuwan Tang1Chen Dai1Ziwei Huang1Yuan Liu2Xidong Duan1( )Xiangfeng Duan3
State Key Laboratory for Chemo/Biosensing and Chemometrics and Hunan Key Laboratory of Two-Dimensional Materials,College of Chemistry and Chemical Engineering, Hunan University,Changsha,410082,China;
Department of Applied Physics,School of Physics and Electronics, Hunan University,Changsha,410082,China;
Department of Chemistry and Biochemistry,University of California, ,Los Angeles, California,90095,USA;

§ Guangzhuang Sun and Bo Li contributed equally to this work.

Abstract

The mixed-dimensional integration of two-dimensional (2D) materials with non-2D materials can give rise to prominent advances in performance or function. To date, the mixed-dimensional one-dimensional (1D)/2D heterostructures have been fabricated using various physical assembly approaches. However, direct epitaxial growth method which has notable advantages in preparing large-scale products and obtaining perfect interfaces is rarely investigated. Herein, we demonstrate for the first time the direct synthesis of the 1D/2D mixed-dimensional heterostructures by sequential vapor-phase growth of Sb2Se3 nanowires on WS2 monolayers. X-ray diffraction (XRD) pattern and Raman spectrum confirm the composition of the Sb2Se3/WS2 heterostructures. Transmission electron microscope (TEM) measurement demonstrates high quality of the heterostructures. Electrical transport characterization reveals that Sb2Se3 nanowire exhibits p-type characteristic and that WS2 monolayer exhibits n-type behavior, and that the p-n diode from 1D/2D mixed-dimensional Sb2Se3/WS2 heterostructure possesses obvious current rectification behavior. Optoelectronic measurements of the heterostructures show apparent photovoltaic response with an open-circuit voltage of 0.19 V, photoresponsivity of 1.51 A/W (Vds = 5 V) and fast response time of less than 8 ms. The van der Waals epitaxial growth mode of Sb2Se3 nanowires on WS2 monolayers is verified by stripping the Sb2Se3 nanowire from the heterostructures using tape. Together, the direct van der Waals epitaxy opens a facile pathway to 1D/2D mixed-dimensional heterostructures for functional electronic and optoelectronic devices.

Keywords: van der Waals epitaxy, Sb2Se3/WS2 heterostructures, rectification behavior, photovoltaic effect, photoswitch

References(70)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

3

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.

4

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.

5

Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.

6

Peng, R. M.; Khaliji, K.; Youngblood, N.; Grassi, R.; Low, T.; Li, M. Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett. 2017, 17, 6315-6320.

7

Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648-4655.

8

Ai, R. Q.; Guan, X.; Li, J.; Yao, K. K.; Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Growth of single-crystalline cadmium iodide nanoplates, CdI2/MoS2 (WS2, WSe2) van der waals heterostructures, and patterned arrays. ACS Nano 2017, 11, 3413-3419.

9

Li, J.; Guan, X.; Wang, C.; Cheng, H. C.; Ai, R. Q.; Yao, K. K.; Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Synthesis of 2D layered BiI3 nanoplates, BiI3/WSe2 van der Waals heterostructures and their electronic, optoelectronic properties. Small 2017, 13, 1701034.

10

Li, B.; Xing, T.; Zhong, M. Z.; Huang, L.; Lei, N.; Zhang, J.; Li, J. B.; Wei, Z. M. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.

11

Liu, J. C.; Liu, X.; Chen, Z. J.; Miao, L. L.; Liu, X. Q.; Li, B.; Tang, L. M.; Chen, K. Q.; Liu, Y.; Li, J. B. et al. Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. Nano Res. 2019, 12, 463-468.

12

Liu, J. C.; Zhong, M. Z.; Liu, X.; Sun, G. Z.; Chen, P.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X. et al. Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotechnology 2018, 29, 474002.

13

Tamalampudi, S. R.; Lu, Y. Y.; Kumar U, R.; Sankar, R.; Liao, C. D.; Moorthy B, K.; Cheng, C. H.; Chou, F. C.; Chen, Y. T. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800-2806.

14

Bandurin, D. A.; Tyurnina, A. V.; Yu, G. L.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223-227.

15

Liu, X.; Sun, G. Z.; Chen, P.; Liu, J. C.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X.; Dang, W. Q. et al. High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure. Nano Res. 2019, 12, 339-344.

16

Zhou, Y. B.; Nie, Y. F.; Liu, Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, Y.; Yin, J. B.; Liu, Z. F.; Peng, H. L. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 2014, 8, 1485-1490.

17

Lei, S. D.; Ge, L. H.; Liu, Z.; Najmaei, S.; Shi, G.; You, G.; Lou, J.; Vajtai, R.; Ajayan, P. M. Synthesis and photoresponse of large GaSe atomic layers. Nano Lett. 2013, 13, 2777-2781.

18

Wang, H.; Huang, X. W.; Lin, J. H.; Cui, J.; Chen, Y.; Zhu, C.; Liu, F. C.; Zeng, Q. S.; Zhou, J. D.; Yu, P. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 2017, 8, 394.

19

Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 2016, 12, 139-143.

20

Wang, H.; Chen, Y.; Duchamp, M.; Zeng, Q. S.; Wang, X. W.; Tsang, S. H.; Li, H. L.; Jing, L.; Yu, T.; Teo, E. H. T. et al. Large-area atomic layers of the charge-density-wave conductor TiSe2. Adv. Mater. 2018, 30, 1704382.

21

Zhang, Z. P.; Niu, J. J.; Yang, P. F.; Gong, Y.; Ji, Q. Q.; Shi, J. P.; Fang, Q. Y.; Jiang, S. L.; Li, H.; Zhou, X. B. et al. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater. 2017, 29, 1702359.

22

Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 2014, 8, 8273-8277.

23

Zhou, H. L.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Weiss, N. O.; Lin, Z. Y.; Huang, Y. et al. Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 2015, 15, 709-713.

24

Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923-930.

25

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

26

Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174-8181.

27

Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447-3454.

28

Lan, C. Y.; Li, C.; Yin, Y.; Liu, Y. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale 2015, 7, 5974-5980.

29

Yang, R. L.; Feng, S. H.; Xiang, J. Y.; Jia, Z. Y.; Mu, C. P.; Wen, F. S.; Liu, Z. Y. Ultrahigh-gain and fast photodetectors built on atomically thin bilayer tungsten disulfide grown by chemical vapor deposition. ACS Appl. Mater. Interfaces 2017, 9, 42001-42010.

30

Tan, H. J.; Fan, Y.; Zhou, Y. Q.; Chen, Q.; Xu, W. S.; Warner, J. H. Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes. ACS Nano 2016, 10, 7866-7873.

31

Gong, F.; Luo, W. J.; Wang, J. L.; Wang, P.; Fang, H. H.; Zheng, D. S.; Guo, N.; Wang, J. L.; Luo, M.; Ho, J. C. et al. High-sensitivity floating-gate phototransistors based on WS2 and MoS2. Adv. Funct. Mater. 2016, 26, 6084-6090.

32

Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230-5234.

33

Zhang, Y.; Tang, L. M.; Ning, F.; Wang, D.; Chen, K. Q. Structural stability and electronic properties of InSb nanowires: A first-principles study. J. Appl. Phys. 2015, 117, 125707.

34

Zhou, Y.; Leng, M. Y.; Xia, Z.; Zhong, J.; Song, H. B.; Liu, X. S.; Yang, B.; Zhang, J. P.; Chen, J.; Zhou, K. H. et al. Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 2014, 4, 1301846.

35

Zhou, Y.; Wang, L.; Chen, S. Y.; Qin, S. K.; Liu, X. S.; Chen, J.; Xue, D. J.; Luo, M.; Cao, Y. Z.; Cheng, Y. B. et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photon. 2015, 9, 409-415.

36

Wen, X. X.; Chen, C.; Lu, S. C.; Li, K. H.; Kondrotas, R.; Zhao, Y.; Chen, W. H.; Gao, L.; Wang, C.; Zhang, J. et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat. Commun. 2018, 9, 2179.

37

Hasan, M. R.; Arinze, E. S.; Singh, A. K.; Oleshko, V. P.; Guo, S. Q.; Rani, A.; Cheng, Y.; Kalish, I.; Zaghloul, M. E.; Rao, M. V. et al. An antimony selenide molecular ink for flexible broadband photodetectors. Adv. Electron. Mater. 2016, 2, 1600182.

38

Song, H. B.; Li, T. Y.; Zhang, J.; Zhou, Y.; Luo, J. J.; Chen, C.; Yang, B.; Ge, C.; Wu, Y. Q.; Tang, J. Highly anisotropic Sb2Se3 nanosheets: Gentle exfoliation from the bulk precursors possessing 1D crystal structure. Adv. Mater. 2017, 29, 1700441.

39

Zhai, T. Y.; Ye, M. F.; Li, L.; Fang, X. S.; Liao, M. Y.; Li, Y. F.; Koide, Y.; Bando, Y.; Golberg, D. Single-crystalline Sb2Se3 nanowires for high-performance field emitters and photodetectors. Adv. Mater. 2010, 22, 4530-4533.

40

Chen, G. H.; Wang, W. L.; Wang, C. D.; Ding, T.; Yang, Q. Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv. Sci. 2015, 2, 1500109.

41

Zhang, J.; Zhang, K. N.; Xia, B. Y.; Wei, Y.; Li, D. Q.; Zhang, K.; Zhang, Z. X.; Wu, Y.; Liu, P.; Duan, X. D. et al. Carbon-nanotube-confined vertical heterostructures with asymmetric contacts. Adv. Mater. 2017, 29, 1702942.

42

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.

43

Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.

44

Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135-6141.

45

Li, B.; Huang, L.; Zhong, M. Z.; Li, Y.; Wang, Y.; Li, J. B.; Wei, Z. M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater. 2016, 2, 1600298.

46

Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176-180.

47

Luo, Z. Z.; Zhang, Y.; Zhang, C. H.; Tan, H. T.; Li, Z.; Abutaha, A.; Wu, X. L.; Xiong, Q. H.; Khor, K. A.; Hippalgaonkar, K. et al. Multifunctional 0D-2D Ni2P nanocrystals-black phosphorus heterostructure. Adv. Energy Mater. 2017, 7, 1601285.

48

Liu, Y. D.; Wang, F. Q.; Wang, X. M.; Wang, X. Z.; Flahaut, E.; Liu, X. L.; Li, Y.; Wang, X. R.; Xu, Y. B.; Shi, Y. et al. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 2015, 6, 8589.

49

Ruzmetov, D.; Zhang, K. H.; Stan, G.; Kalanyan, B.; Bhimanapati, G. R.; Eichfeld, S. M.; Burke, R. A.; Shah, P. B.; O'Regan, T. P.; Crowne, F. J. et al. Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano 2016, 10, 3580-3588.

50

Li, B.; Shi, G.; Lei, S. D.; He, Y. M.; Gao, W. L.; Gong, Y. J.; Ye, G. L.; Zhou, W.; Keyshar, K.; Hao, J. et al. 3D band diagram and photoexcitation of 2D-3D semiconductor heterojunctions. Nano Lett. 2015, 15, 5919-5925.

51

Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2016, 16, 170-181.

52

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

53

Miao, J. S.; Hu, W. D.; Guo, N.; Lu, Z. Y.; Liu, X. Q.; Liao, L.; Chen, P. P.; Jiang, T.; Wu, S. W.; Ho, J. C. et al. High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. Small 2015, 11, 936-942.

54

Lee, Y. T.; Jeon, P. J.; Han, J. H.; Ahn, J.; Lee, H. S.; Lim, J. Y.; Choi, W. K.; Song, J. D.; Park, M. C.; Im, S. et al. Mixed-dimensional 1D ZnO-2D WSe2 van der Waals heterojunction device for photosensors. Adv. Funct. Mater. 2017, 27, 1703822.

55

Jeon, P. J.; Lee, Y. T.; Lim, J. Y.; Kim, J. S.; Hwang, D. K.; Im, S. Black phosphorus-zinc oxide nanomaterial heterojunction for p-n diode and junction field-effect transistor. Nano Lett. 2016, 16, 1293-1298.

56

Henning, A.; Sangwan, V. K.; Bergeron, H.; Balla, I.; Sun, Z. Y.; Hersam, M. C.; Lauhon, L. J. Charge separation at mixed-dimensional single and multilayer MoS2/silicon nanowire heterojunctions. ACS Appl. Mater. Interfaces 2018, 10, 16760-16767.

57

Fang, Q. Y.; Shang, Q. Y.; Zhao, L. Y.; Wang, R.; Zhang, Z. P.; Yang, P. F.; Sui, X. Y.; Qiu, X. H.; Liu, X. F.; Zhang, Q. et al. Ultrafast charge transfer in perovskite nanowire/2D transition metal dichalcogenide heterostructures. J. Phys. Chem. Lett. 2018, 9, 1655-1662.

58

Zhang, J.; Wei, Y.; Yao, F. R.; Li, D. Q.; Ma, H.; Lei, P.; Fang, H. H.; Xiao, X. Y.; Lu, Z. X.; Yang, J. H. et al. SWCNT-MoS2-SWCNT vertical point heterostructures. Adv. Mater. 2016, 29, 1604469.

59

Li, Y. T.; Huang, L.; Li, B.; Wang, X. T.; Zhou, Z. Q.; Li, J. B.; Wei, Z. M. Co-nucleus 1D/2D heterostructures with Bi2S3 nanowire and MoS2 monolayer: one-step growth and defect-induced formation mechanism. ACS Nano 2016, 10, 8938-8946.

60

Guijarro, N.; Lutz, T.; Lana-Villarreal, T.; O'Mahony, F.; Gómez, R.; Haque, S. A. Toward antimony selenide sensitized solar cells: Efficient charge photogeneration at spiro-OMeTAD/Sb2Se3/metal oxide heterojunctions. J. Phys. Chem. Lett. 2012, 3, 1351-1356.

61

Li, Z. Q.; Chen, X.; Zhu, H. B.; Chen, J. W.; Guo, Y. T.; Zhang, C.; Zhang, W.; Niu, X. N.; Mai, Y. H. Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization. Sol. Energy Mater. Sol. Cells 2017, 161, 190-196.

62

Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2013, 2, 131-136.

63

Peimyoo, N.; Shang, J. Z.; Cong, C. X.; Shen, X. N.; Wu, X. Y.; Yeow, E. K. L.; Yu, T. Nonblinking, intense two-dimensional light emitter: Monolayer WS2 triangles. ACS Nano 2013, 7, 10985-10994.

64

Chen, Y.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: a typical study on WS2. Adv. Mater. 2017, 29, 1603550.

65

Yoo, Y.; Degregorio, Z. P.; Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281-14287.

66

Ma, J. M.; Wang, Y. P.; Wang, Y. J.; Peng, P.; Lian, J. B.; Duan, X. C.; Liu, Z. F.; Liu, X. D.; Chen, Q.; Kim, T. et al. One-dimensional Sb2Se3 nanostructures: Solvothermal synthesis, growth mechanism, optical and electrochemical properties. CrystEngComm 2011, 13, 2369-2374.

67

Chen, S.; Qiao, X. S.; Wang, F. X.; Luo, Q.; Zhang, X. H.; Wan, X.; Xu, Y.; Fan, X. P. Facile synthesis of hybrid nanorods with the Sb2Se3/AgSbSe2 heterojunction structure for high performance photodetectors. Nanoscale 2016, 8, 2277-2283.

68

Yang, W.; Ahn, J.; Oh, Y.; Tan, J.; Lee, H.; Park, J.; Kwon, H. C.; Kim, J.; Jo, W.; Kim, J. et al. Adjusting the anisotropy of 1D Sb2Se3 nanostructures for highly efficient photoelectrochemical water splitting. Adv. Energy Mater. 2018, 8, 1702888.

69

Huo, N. J.; Yang, J. H.; Huang, L.; Wei, Z. M.; Li, S. S.; Wei, S. H.; Li, J. B. Tunable polarity behavior and self-driven photoswitching in p-WSe2/ n-WS2 heterojunctions. Small 2015, 11, 5430-5438.

70

Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590-5597.

File
12274_2019_2364_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 February 2019
Revised: 16 February 2019
Accepted: 27 February 2019
Published: 28 March 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We acknowledge the financial support from the Fundamental Research Funds of the Central Universities (No. 531107051078), the Double First-Class University Initiative of Hunan University (No. 531109100004). We also acknowledge the support from the National Natural Science Foundation of China (No. 751214296), Hunan Key Laboratory of Two-Dimensional Materials (No. 801200005), and Strategic Priority Research Program of Chinese Academy of Science (No. XDB30000000).

Return