Journal Home > Volume 12 , Issue 8

Silicon has attracted much attention as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and rich resource abundance. However, the practical battery use of Si is challenged by its low conductivity and drastic volume variation during the Li uptake/release process. Tremendous efforts have been made on shrinking the particle size of Si into nanoscale so that the volume variation could be accommodated. However, the bare nano-Si material would still pulverize upon (de)lithiation. Moreover, it shows an excessive surface area to invite unlimited growth of solid electrolyte interface that hinders the transportation of charge carriers, and an increased interparticle resistance. As a result, the Si nanoparticles gradually lose their electrical contact during the cycling process, which accounts for poor thermodynamic stability and sluggish kinetics of the anode reaction versus Li. To address these problems and improve the Li storage performance of nano-Si anode, proper structural design should be applied on the Si anode. In this perspective, we will briefly review some strategies for improving the electrochemistry versus Li of nano-Si materials and their derivatives, and show opinions on the optimal design of nanostructured Si anode for advanced LIBs.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 December 2018
Revised: 21 February 2019
Accepted: 26 February 2019
Published: 28 March 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors acknowledge the financial support of this work by the National Natural Science Foundation of China (No. 21773078) and the Fundamental Research Funds for the Central Universities of China (Nos. 2662015PY163 and 2662017JC025).

Return