Journal Home > Volume 12 , Issue 5

In the development of wearable energy devices, polypyrrole (PPy) is considered as a promising electrode material owing to its high capacitance and good mechanical flexibility. Herein, we report a PPy-based hybrid structure consisting of vertical PPy nanotube arrays and carbon nano-onions (CNOs) grown on textile for wearable supercapacitors. In this hybrid nanostructure, the vertical PPy nanotubes provide straight and superhighways for electron and ion transport, boosting the energy storage; while the CNOs mainly act as a conductivity retainer for the underlayered PPy film during stretching. A facile template-degrading method is developed for the large-area growth of the PPy-based hybrid nanostructures on the textile through one-step polymerization process. The fabricated stretchable supercapacitor exhibits superior energy storage capacitance with the specific capacitance of 64 F·g−1. Also, it presents the high capacitance retention of 99% at a strain of 50% after 500 stretching cycles. Furthermore, we demonstrate that the textile-based stretchable supercapacitor device can provide a stable energy storage performance in different wearable situations for practical applications. The use of the PPy-based hybrid nanostructures as the supercapacitor electrode offers a novel structure design and a promising opportunity for wearable power supply in real applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polypyrrole-based hybrid nanostructures grown on textile for wearable Supercapacitors

Show Author's information Lingchang Wang1,2,3Chenguang Zhang1,2,3( )Xin Jiao1,2,3Zhihao Yuan1,2,3( )
School of Materials Science and Engineering,Tianjin University of Technology,Tianjin,300384,China;
Tianjin Key Laboratory for Photoelectric Materials & Devices,Tianjin University of Technology,Tianjin,300384,China;
Key Laboratory of Display Materials and Photoelectric Devices,Ministry of Education, Tianjin University of Technology,Tianjin,300384,China;

Abstract

In the development of wearable energy devices, polypyrrole (PPy) is considered as a promising electrode material owing to its high capacitance and good mechanical flexibility. Herein, we report a PPy-based hybrid structure consisting of vertical PPy nanotube arrays and carbon nano-onions (CNOs) grown on textile for wearable supercapacitors. In this hybrid nanostructure, the vertical PPy nanotubes provide straight and superhighways for electron and ion transport, boosting the energy storage; while the CNOs mainly act as a conductivity retainer for the underlayered PPy film during stretching. A facile template-degrading method is developed for the large-area growth of the PPy-based hybrid nanostructures on the textile through one-step polymerization process. The fabricated stretchable supercapacitor exhibits superior energy storage capacitance with the specific capacitance of 64 F·g−1. Also, it presents the high capacitance retention of 99% at a strain of 50% after 500 stretching cycles. Furthermore, we demonstrate that the textile-based stretchable supercapacitor device can provide a stable energy storage performance in different wearable situations for practical applications. The use of the PPy-based hybrid nanostructures as the supercapacitor electrode offers a novel structure design and a promising opportunity for wearable power supply in real applications.

Keywords: stretchable electrode, carbon nano-onion, wearable supercapacitor, polypyrrole nanotube, template-degrading method

References(50)

1

Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

2

Wang, H.; Li, F. S.; Zhu, B. W.; Guo, L.; Yang, Y.; Hao, R.; Wang, H.; Liu, Y. Q.; Wang, W.; Guo, X. T. et al. Flexible integrated electrical cables based on biocomposites for synchronous energy transmission and storage. Adv. Funct. Mater. 2016, 26, 3472–3479.

3

Kim, R. H.; Bae, M. H.; Kim, D. G.; Cheng, H. Y.; Kim, B. H.; Kim, D. H.; Li, M.; Wu, J.; Du, F.; Kim, H. S. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 2011, 11, 3881–3886.

4

Zhao, J. X.; Li, C. W.; Zhang, Q. C.; Zhang, J.; Wang, X. N.; Sun, J.; Wang, J. J.; Xie, J. X.; Lin, Z. Y.; Li, Z. et al. Hierarchical ferric-cobalt-nickel ternary oxide nanowire arrays supported on graphene fibers as high-performance electrodes for flexible asymmetric supercapacitors. Nano Res. 2018, 11, 1775–1786.

5

Wang, C. D.; Liu, D. B.; Chen, S. M.; Shang, Y. A.; Haleem, Y. A.; Wu, C. Q.; Xu, W. Y.; Fang, Q.; Habib, M.; Cao, J. et al. All-carbon ultrafast supercapacitor by integrating multidimensional nanocarbons. Small 2016, 12, 5684–5691.

6

Kim, B. C.; Hong, J. Y.; Wallace, G. G.; Park, H. S. Recent progress in flexible electrochemical capacitors: Electrode materials, device configuration, and functions. Adv. Energy Mater. 2015, 5, 1500959.

7

Jiao, X.; Zhang, C. G.; Yuan, Z. H. Facile and large-area preparation of polypyrrole film for low-haze transparent supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 41299–41311.

8

Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. 2018, 11, 4313–4322.

9

Huang, Y.; Tao, J. Y.; Meng, W. J.; Zhu, M. S.; Huang, Y.; Fu, Y. Q.; Gao, Y. H.; Zhi, C. Y. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525.

10

Zhu, J.; Tang, S. C.; Wu, J.; Shi, X. L.; Zhu, B. G.; Meng, X. K. Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4-NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 2017, 7, 1601234.

11

Bao, L. H.; Li, X. D. Towards textile energy storage from cotton T-shirts. Adv. Mater. 2012, 24, 3246–3252.

12

Bao, Z. A.; Chen, X. D. Flexible and stretchable devices. Adv. Mater. 2016, 28, 4177–4179.

13

Xue, Q.; Sun, J. F.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Y. K.; Li, N.; Zhang, H. Y.; Zhi, C. Y. Recent progress on flexible and wearable supercapacitors. Small 2017, 13, 1701827.

14

Yang, Y.; Wang, H.; Hao, R.; Guo, L. Transition-metal-free biomolecule-based flexible asymmetric supercapacitors. Small 2016, 12, 4683–4689.

15

Yue, B. B.; Wang, C. Y.; Ding, X.; Wallace, G. G. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim. Acta 2012, 68, 18–24.

16

Chen, T.; Xue, Y. H.; Roy, A. K.; Dai, L. M. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8, 1039–1046.

17

Wang, X. L.; Hu, H.; Shen, Y. D.; Zhou, X. C.; Zheng, Z. J. Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms. Adv. Mater. 2011, 23, 3090–3094.

18

Wang, S. Y.; Pei, B.; Zhao, X. S.; Dryfe, R. A. W. Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2013, 2, 530–536.

19

Chen, B. L.; Jiang, Y. Z.; Tang, X. H.; Pan, Y. Y.; Hu, S. Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces 2017, 9, 28433–28440.

20

Zhang, N.; Luan, P. S.; Zhou, W. Y.; Zhang, Q.; Cai, L.; Zhang, X.; Zhou, W. B.; Fan, Q. X.; Yang, F.; Zhao, D. et al. Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Res. 2014, 7, 1680–1690.

21

Zhang, C. G.; Peng, Z. W.; Lin, J.; Zhu, Y.; Ruan, G. D.; Hwang, C. C.; Lu, W.; Hauge, R. H.; Tour, J. M. Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors. ACS Nano 2013, 7, 5151–5159.

22

Yamada, T.; Namai, T.; Hata, K.; Futaba, D. N.; Mizuno, K.; Fan, J.; Yudasaka, M.; Yumura, M.; Iijima, S. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat. Nanotechnol. 2006, 1, 131–136.

23

Wang, K.; Wu, H. P.; Meng, Y. N.; Wei, Z. X. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10, 14–31.

24

Ni, J. F.; Li, L. Self-supported 3D array electrodes for sodium microbatteries. Adv. Funct. Mater. 2018, 28, 1704880.

25

Zhang, C. G.; Bets, K.; Lee, S. S.; Sun, Z. Z.; Mirri, F.; Colvin, V. L.; Yakobson, B. I.; Tour, J. M.; Hauge, R. H. Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes. ACS Nano 2012, 6, 6023–6032.

26

Zhu, Y.; Li, L.; Zhang, C. G.; Casillas, G.; Sun, Z. Z.; Yan, Z.; Ruan, G. D.; Peng, Z. W.; Raji, A. R. O.; Kittrell, C. et al. A seamless three-dimensional carbon nanotube graphene hybrid material. Nat. Commun. 2012, 3, 1225.

27

Zhang, C. G.; Li, J. J.; Zeng, X. S.; Yuan, Z. H.; Zhao, N. Q. Graphene quantum dots derived from hollow carbon nano-onions. Nano Res. 2018, 11, 174–184.

28

Zeiger, M.; Jäckel, N.; Mochalin, V. N.; Presser, V. Review: Carbon onions for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 3172–3196.

29

Weingarth, D.; Zeiger, M.; Jäckel, N.; Aslan, M.; Feng, G.; Presser, V. Graphitization as a universal tool to tailor the potential-dependent capacitance of carbon supercapacitors. Adv. Energy Mater. 2014, 4, 1400316.

30

Zhang, C. G.; Li, J. J.; Liu, E. Z.; He, C. N.; Shi, C. S.; Du, X. W.; Hauge, R. H.; Zhao, N. Q. Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage. Carbon 2012, 50, 3513–3521.

31

Yuan, L. Y.; Yao, B.; Hu, B.; Huo, K. F.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 2013, 6, 470–476.

32

Mykhailiv, O.; Imierska, M.; Petelczyc, M.; Echegoyen, L.; Plonska-Brzezinska, M. E. Chemical versus electrochemical synthesis of carbon nano-onion/polypyrrole composites for supercapacitor electrodes. Chem. —Eur. J. 2015, 21, 5783–5793.

33

Jeong, H. T.; Kim, Y. R.; Kim, B. C. Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes. J. Alloys Compd. 2017, 727, 721–727.

34

Yang, X. M.; Zhu, Z. X.; Dai, T. Y.; Lu, Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Comm. 2005, 26, 1736–1740.

35

Chen, J. C.; Wang, Y. M.; Cao, J. Y.; Liu, Y.; Zhou, Y.; Ouyang, J. H.; Jia, D. H. Facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film. ACS Appl. Mater. Interfaces 2017, 9, 19831–19842.

36

Yang, C.; Zhang, L. L.; Hu, N. T.; Yang, Z.; Wei, H.; Wang, Y. Y.; Zhang, Y. F. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers. Appl. Surf. Sci. 2016, 387, 666–673.

37

Yang, J.; Wang, H.; Yang, Y.; Wu, J. P.; Hu, P. F.; Guo, L. Pseudocapacitive-dye-molecule-based high-performance flexible supercapacitors. Nanoscale 2017, 9, 9879–9885.

38

Zhang, D.; Dong, Q. Q.; Wang, X.; Yan, W.; Deng, W.; Shi, L. Y. Preparation of a three-dimensional ordered macroporous carbon nanotube/polypyrrole composite for supercapacitors and diffusion modeling. J. Phys. Chem. C 2013, 117, 20446–20455.

39

Song, L. F.; Zou, Y. J.; Zhang, H. T.; Xiang, C. L.; Chu, H. L.; Qiu, S. J.; Yan, E. H.; Xu, F.; Sun, L. X. High performance supercapacitor based on polypyrrole/melamine formaldehyde resin derived carbon material. Int. J. Electrochem. Sci. 2017, 12, 1014–1024.

40

Morozan, A.; Jégou, P.; Campidelli, S.; Palacin, S.; Jousselme, B. Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction. Chem. Commun. 2012, 48, 4627–4629.

41

Li, H. H.; Song, J.; Wang, L. L.; Feng, X. M.; Liu, R. Q.; Zeng, W. J.; Huang, Z. D.; Ma, Y. W.; Wang, L. H. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array. Nanoscale 2017, 9, 193–200.

42

Sultana, I.; Rahman, M. M.; Wang, J. Z.; Wang, C. Y.; Wallace, G. G.; Liu, H. K. All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochim. Acta. 2012, 83, 209–215.

43

Islam, N.; Warzywoda, J.; Fan, Z. Y. Edge-oriented graphene on carbon nanofiber for high-frequency supercapacitors. Nano-Micro Lett. 2018, 10, 9.

44

Taberna, P. L.; Simon, P.; Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 2003, 150, A292–A300.

45

Song, Y.; Liu, T. Y.; Xu, X. X.; Feng, D. Y.; Li, Y.; Liu, X. X. Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv. Funct. Mater. 2015, 25, 4626–4632.

46

Kovalenko, I.; Bucknall, D. G.; Yushin, G. Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors. Adv. Funct. Mater. 2010, 20, 3979–3986.

47

Huang, J. Y.; Wang, K.; Wei, Z. X. Conducting polymer nanowire arrays with enhanced electrochemical performance. J. Mater. Chem. 2010, 20, 1117–1121.

48

Huang, T. Q.; Cai, S. Y.; Chen, H.; Jiang, Y. Q.; Wang, S. Y.; Gao, C. Continuous fabrication of the graphene-confined polypyrrole film for cycling stable supercapacitors. J. Mater. Chem. A 2017, 5, 8255–8260.

49

Zhang, C. G.; Ma, K.; Zhao, N. Q.; Yuan, Z. H. A core–shell strategy for improving alloy catalyst activity for continual growth of hollow carbon onions. Cryst. Growth Des. 2018, 18, 7470–7480.

50

Noked, M.; Liu, C. Y.; Hu, J. K.; Gregorczyk, K.; Rubloff, G. W.; Lee, S. B. Electrochemical thin layers in nanostructures for energy storage. Acc. Chem. Res. 2016, 49, 2336–2346.

File
12274_2019_2360_MOESM1_ESM.pdf (4.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 January 2019
Revised: 17 February 2019
Accepted: 24 February 2019
Published: 14 March 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors acknowledge the finance support by the National Natural Science Foundation of China (No. 51702233), the Natural Science Foundation of Tianjin City (No. 16JCYBJC41000) and support by Tianjin Key Subject for Materials Physics and Chemistry.

Return