Journal Home > Volume 12 , Issue 5

Silicon with high specific capacity is deemed an ideal anode material for lithium ion batteries, which, however suffers from low cycling life due to its dramatic volume changes. Water-soluble polymer binders recently gain increasing attention by providing an eco-friendly and low-cost way in improving the cycling stability of Si-based anodes. Herein, a novel bioinspired supramolecular mineral hydrogel binder consisting of polyacrylic acid (PAA) physically crosslinked with amorphous calcium carbonate (ACC) nanoparticles is designed for high-performance anodes made from low-cost microsized Si particles. Owing to its organic-inorganic hydrophilic nature, ACC-PAA hybrid binder exhibits the reported highest modulus (~ 22 GPa) for polymer binders in electrolyte, even higher than lithiated Si species (Li15Si4, ~ 12 GPa). Together with its excellent adhesion and electrochemical stability, ACC-PAA binder can effectively suppress the pulverization of Si particles and maintain the mechanical integrity of electrodes during cycling. Therefore, even with a low binder content, the anode still shows an initial discharge capacity of 2, 973 mAh·g−1 and Coulombic efficiency of 81.5%, and retains 75% at a current density of 600 mA·g−1 after 100 cycles. The present organic-inorganic hybrid mineral binder may open a new approach for designing more effective polymer binders for Si-based lithium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery

Show Author's information Meng Tian1Xiao Chen1Shengtong Sun2( )Dong Yang1( )Peiyi Wu1,2( )
State Key Laboratory of Molecular Engineering of Polymers,Department of Macromolecular Science, Laboratory for Advanced Materials, Fudan University,Shanghai,200433,China;
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-dimension Materials, Donghua University,Shanghai,201620,China;

Abstract

Silicon with high specific capacity is deemed an ideal anode material for lithium ion batteries, which, however suffers from low cycling life due to its dramatic volume changes. Water-soluble polymer binders recently gain increasing attention by providing an eco-friendly and low-cost way in improving the cycling stability of Si-based anodes. Herein, a novel bioinspired supramolecular mineral hydrogel binder consisting of polyacrylic acid (PAA) physically crosslinked with amorphous calcium carbonate (ACC) nanoparticles is designed for high-performance anodes made from low-cost microsized Si particles. Owing to its organic-inorganic hydrophilic nature, ACC-PAA hybrid binder exhibits the reported highest modulus (~ 22 GPa) for polymer binders in electrolyte, even higher than lithiated Si species (Li15Si4, ~ 12 GPa). Together with its excellent adhesion and electrochemical stability, ACC-PAA binder can effectively suppress the pulverization of Si particles and maintain the mechanical integrity of electrodes during cycling. Therefore, even with a low binder content, the anode still shows an initial discharge capacity of 2, 973 mAh·g−1 and Coulombic efficiency of 81.5%, and retains 75% at a current density of 600 mA·g−1 after 100 cycles. The present organic-inorganic hybrid mineral binder may open a new approach for designing more effective polymer binders for Si-based lithium-ion batteries.

Keywords: lithium-ion battery, polymer binder, mineral hydrogel, microsized silicon particle

References(57)

1

Tang, Y. X.; Zhang, Y. Y.; Li, W. L.; Ma, B.; Chen, X. D. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 44, 5926–5940.

2

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

3

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium– sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

4

Jia, J. C.; Hu, X.; Wen, Z. H. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes. Nano Res. 2018, 11, 1135–1145.

5

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

6

Luo, F.; Liu, B. N.; Zheng, J. Y.; Chu, G.; Zhong, K. F.; Li, H.; Huang, X. J.; Chen, L. Q. Review-nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries. J. Electrochem. Soc. 2015, 162, A2509–A2528.

7

Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.

8

Su, H. P.; Barragan, A. A.; Geng, L. X.; Long, D. H.; Ling, L. C.; Bozhilov, K. N.; Mangolini, L.; Guo, J. C. Colloidal synthesis of silicon–carbon composite material for lithium-ion batteries. Angew. Chem. 2017, 129, 10920–10925.

9

Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615–1621.

10

Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.

11

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

12

Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.

13

Lin, W. Z.; Lian, Y. P.; Zeng, G.; Chen, Y. Y.; Wen, Z. H.; Yang, H. H. A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Res. 2018, 11, 5968–5977.

14

Terranova, M. L.; Orlanducci, S.; Tamburri, E.; Guglielmotti, V.; Rossi, M. Si/C hybrid nanostructures for Li-ion anodes: An overview. J. Power Sources 2014, 246, 167–177.

15

Guo, S. C.; Hu, X.; Hou, Y.; Wen, Z. H. Tunable synthesis of yolk–shell porous silicon@carbon for optimizing Si/C-based anode of lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42084–42092.

16

Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. N. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 2013, 5, 1042–1048.

17

Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

18

Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75–79.

19

Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N. S.; Cho, J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. , Int. Ed. 2012, 51, 8762–8767.

20

Bie, Y. T.; Yang, J.; Nuli, Y.; Wang, J. L. Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 1919–1924.

21

Bie, Y. T.; Yang, J.; Liu, X. L.; Wang, J. L.; Nuli, Y.; Lu, W. Polydopamine wrapping silicon cross-linked with polyacrylic acid as high-performance anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2899–2904.

22

Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571–1576.

23

Shin, D.; Park, H.; Paik, U. Cross-linked poly(acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries. Electrochem. Commun. 2017, 77, 103–106.

24

Lee, S. H.; Lee, J. H.; Nam, D. H.; Cho, M.; Kim, J.; Chanthad, C.; Lee, Y. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery. ACS Appl. Mater. Interfaces 2018, 10, 16449–16457.

25

Xu, Z. X.; Yang, J.; Zhang, T.; Nuli, Y.; Wang, J. L.; Hirano, S. I. Silicon microparticle anodes with self-healing multiple network binder. Joule 2018, 2, 950–961.

26

Wang, L.; Liu, T. F.; Peng, X.; Zeng, W. W.; Jin, Z. Z.; Tian, W. F.; Gao, B.; Zhou, Y. H.; Chu, P. K.; Huo, K. F. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1704858.

27

Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N.; McDowell, M. T.; Bao, Z. N.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

28

Zeng, W. W.; Wang, L.; Peng, X.; Liu, T. F.; Jiang, Y. Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K. F.; Zhou, Y. H. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1702314.

29

Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G. R.; Lin, Z.; Liu, G.; Zhang, S. Q. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 2018, 118, 8936–8982.

30

Yin, H.; Liu, Y.; Yu, N.; Qu, H. Q.; Liu, Z. T.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Graphene-like MoS2 nanosheets on carbon fabrics as high-performance binder-free electrodes for supercapacitors and Li-ion batteries. ACS Omega 2018, 3, 17466–17473.

31

Hertzberg, B.; Alexeev, A.; Yushin, G. Deformations in Si−Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 2010, 132, 8548–8549.

32

Wang, Y. K.; Zhang, Q. L.; Li, D. W.; Hu, J. Z.; Xu, J. G.; Dang, D. Y.; Xiao, X. C.; Cheng, Y. T. Mechanical property evolution of silicon composite electrodes studied by environmental nanoindentation. Adv. Energy Mater. 2018, 8, 1702578.

33

Hertzberg, B.; Benson, J.; Yushin, G. Ex-situ depth-sensing indentation measurements of electrochemically produced Si–Li alloy films. Electrochem. Commun. 2011, 13, 818–821.

34

Kim, H.; Chou, C. Y.; Ekerdt, J. G.; Hwang, G. S. Structure and properties of Li−Si alloys: A first-principles study. J. Phys. Chem. C 2011, 115, 2514– 2521.

35

Yin, H.; Yu, X. X.; Yu, Y. W.; Cao, M. L.; Zhao, H.; Li, C.; Zhu, M. Q. Tellurium nanotubes grown on carbon fiber cloth as cathode for flexible all-solid-state lithium-tellurium batteries. Electrochim. Acta 2018, 282, 870–876.

36

Chon, M. J.; Sethuraman, V. A.; McCormick, A.; Srinivasan, V.; Guduru, P. R. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 2011, 107, 045503.

37

Yin, H.; Yu, X. X.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Zhu, M. Q. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J. Alloys Compd. 2017, 706, 97–102.

38

Zhang, L.; Zhang, L. Y.; Chai, L. L.; Xue, P.; Hao, W. W.; Zheng, H. H. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A 2014, 2, 19036–19045.

39

Song, J. X.; Zhou, M. J.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D. H.; Yu, Z. X.; Regula, M.; Wang, D. H. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904–5910.

40

Park, Y.; Lee, S.; Kim, S. H.; Jang, B. Y.; Kim, J. S.; Oh, S. M.; Kim, J. Y.; Choi, N. S.; Lee, K. T.; Kim, B. S. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries. RSC Adv. 2013, 3, 12625–12630.

41

Liu, J.; Zhang, Q.; Zhang, T.; Li, J. T.; Huang, L.; Sun, S. G. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 3599–3605.

42

Luo, C.; Du, L. L.; Wu, W.; Xu, H. L.; Zhang, G. Z.; Li, S.; Wang, C. Y.; Lu, Z. G.; Deng, Y. H. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries. ACS Sustain. Chem. Eng. 2018, 6, 12621–12629.

43

Gower, L. B.; Odom, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 2000, 210, 719–734.

44

Cölfen, H. A crystal-clear view. Nat. Mater. 2010, 9, 960–961.

45

Finnemore, A.; Cunha, P.; Shean, T.; Vignolini, S.; Guldin, S.; Oyen, M.; Steiner, U. Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 2012, 3, 966.

46

Mikkelsen, A.; Engelsen, S. B.; Hansen, H. C. B.; Larsen, O.; Skibsted, L. H. Calcium carbonate crystallization in the α-chitin matrix of the shell of pink shrimp, Pandalus borealis, during frozen storage. J. Cryst. Growth 1997, 177, 125–134.

47

Saito, T.; Oaki, Y.; Nishimura, T.; Isogai, A.; Kato, T. Bioinspired stiff and flexible composites of nanocellulose-reinforced amorphous CaCO3. Mater. Horiz. 2014, 1, 321–325.

48

Sun, S. T.; Mao, L. B.; Lei, Z. Y.; Yu, S. H.; Cölfen, H. Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for "mineral plastics". Angew. Chem. , Int. Ed. 2016, 55, 11765–11769.

49

Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

50

Lin, S. Y.; Zhong, Y. J.; Zhao, X. L.; Sawada, T.; Li, X. M.; Lei, W. H.; Wang, M. R.; Serizawa, T.; Zhu, H. W. Synthetic multifunctional graphene composites with reshaping and self-healing features via a facile biomineralization-inspired process. Adv. Mater. 2018, 30, 1803004.

51

Li, A.; Jia, Y. F.; Sun, S. T.; Xu, Y. S.; Minsky, B. B.; Stuart, M. A. C.; Cölfen, H.; von Klitzing, R.; Guo, X. H. Mineral-enhanced polyacrylic acid hydrogel as an oyster-inspired organic-inorganic hybrid adhesive. ACS Appl. Mater. Interfaces 2018, 10, 10471–10479.

52

Bromberg, L.; Temchenko, M.; Alakhov, V.; Hatton, T. A. Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels. Int. J. Pharm. 2004, 282, 45–60.

53

Li, D. W.; Wang, Y. K.; Hu, J. Z.; Lu, B.; Dang, D. Y.; Zhang, J. Q.; Cheng, Y. T. Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. J. Power Sources 2018, 387, 9–15.

54

Chen, Z.; Wang, C.; Lopez, J.; Lu, Z. D.; Cui, Y.; Bao, Z. N. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 2015, 5, 1401826.

55

McDowell, M. T.; Ryu, I.; Lee, S. W.; Wang, C. M.; Nix, W. D.; Cui, Y. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 2012, 24, 6034–6041.

56

Guo, S. T.; Li, H.; Li, Y. Q.; Han, Y.; Chen, K. B.; Xu, G. Z.; Zhu, Y. J.; Hu, X. L. SiO2-enhanced structural stability and strong adhesion with a new binder of konjac glucomannan enables stable cycling of silicon anodes for lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1800434.

57

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

File
12274_2019_2359_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 December 2018
Revised: 29 January 2019
Accepted: 24 February 2019
Published: 23 March 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Nos. 51733003 and 51873035).

Return