Journal Home > Volume 12 , Issue 9

Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field.


menu
Abstract
Full text
Outline
About this article

Aqueous organic redox flow batteries

Show Author's information Vikram Singh1,2,§Soeun Kim1,2,§Jungtaek Kang1Hye Ryung Byon1,2( )
Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)291 Daehak-roYuseong-guDaejeon34141Republic of Korea
KAIST Institute for NanoCenturyAdvanced Battery Center291 Daehak-roYuseong-guDaejeon34141Republic of Korea

§ Vikram Singh and Soeun Kim contributed equally to this work.

Abstract

Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field.

Keywords: redox flow battery, redox molecules, quinone, 2, 2, 6, 6-tetramethylpiperidin-1-yl)oxyl (TEMPO), viologen, solubility, crossover

References(78)

1

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.

2

Sternberg, A.; Bardow, A. Power-to-what?-Environmental assessment of energy storage systems. Energy Environ. Sci. 2015, 8, 389-400.

3

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. H.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577-3613.

4

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.

5

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

6

Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569-596.

7

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. In Materials for Sustainable Energy; Dusastre, V., Ed.; Co-Published with Macmillan Publishers Ltd: UK, 2010; pp 171-179.

8

Hu, L. B.; Zhang, S. S.; Zhang, Z. C. Electrolytes for lithium and lithium-ion batteries. In Rechargeable Batteries; Zhang, Z. C.; Zhang, S. S., Eds.; Springer: Cham, 2015; pp 231-261.

9

Ding, Y.; Zhang, C. K.; Zhang, L. Y.; Zhou, Y. G.; Yu, G. H. Molecular engineering of organic electroactive materials for redox flow batteries. Chem. Soc. Rev. 2018, 47, 69-103.

10

Alotto, P.; Guarnieri, M.; Moro, F. Redox flow batteries for the storage of renewable energy: A review. Renew. Sustain. Energy Rev. 2014, 29, 325-335.

11

Chen, H. N.; Cong, G. T.; Lu, Y. C. Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. J. Energy Chem. 2018, 27, 1304-1325.

12

Duan, W.; Kizewski, J. P.; Wang, W. Introduction to redox flow batteries. In Redox Flow Batteries; CRC Press: 2017; pp 43-76.

13

Liu, W. Q.; Lu, W. J.; Zhang, H. M.; Li, X. F. Aqueous flow batteries: Research and development. Chem. -Eur. J. 2019, 25, 1649-1664.

14

Weber, A. Z.; Mench, M. M.; Meyers, J. P.; Ross, P. N.; Gostick, J. T.; Liu, Q. H. Redox flow batteries: A review. J. Appl. Electrochem. 2011, 41, 1137-1164.

15

Kim, K. J.; Park, M. S.; Kim, Y. J.; Kim, J. H.; Dou, S. X.; Skyllas-Kazacos, M. A Technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 16913-16933.

16

Ulaganathan, M.; Aravindan, V.; Yan, Q. Y; Madhavi, S.; Skyllas-Kazacos, M.; Lim, T. M. Recent advancements in all-vanadium redox flow batteries. Adv. Mater. Interfaces 2016, 3, 1500309.

17

Choi, C.; Kim, S.; Kim, R.; Choi, Y.; Kim, S.; Jung, H. Y.; Yang, J. H.; Kim, H. T. A review of vanadium electrolytes for vanadium redox flow batteries. Renew. Sustain. Energy Rev. 2017, 69, 263-274.

18

Xu, Q.; Ji, Y. N.; Qin, L. Y.; Leung, P. K.; Qiao, F.; Li, Y. S.; Su, H. N. Evaluation of redox flow batteries goes beyond round-trip efficiency: A technical review. J. Energy Storage 2018, 16, 108-115.

19

Yoon, A. K. Y.; Noh, H. S.; Yoon, Y. S. Analysis of vanadium redox flow battery cell with superconducting charging system for solar energy. Elect. Electron. Eng. 2016, 6, 1-5.

20

Butler, P. C.; Eidler, P. A.; Grimes, P. G.; Klassen, S. E.; Miles, R. C. Zinc/ bromine batteries. Handbook of Batteries; Linden, D.; Reddy, T. B., Eds.; McGraw-Hill: Ohio, 2001; pp 37-01.

21

Lai, Q. Z.; Zhang, H. M.; Li, X. F.; Zhang, L. Q.; Cheng, Y. H. A novel single flow zinc-bromine battery with improved energy density. J. Power Sources, 2013, 235, 1-4.

22

Zhao, Y; Wang, L. N.; Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun., 2013, 4, 1896.

23

Weng, G. M.; Li, Z. J.; Cong, G. T.; Zhou, Y. C.; Lu, Y. C. Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/ polyiodide redox flow batteries. Energy Environ. Sci. 2017, 10, 735-741.

24

Hu, B.; DeBruler, C.; Rhodes, Z.; Liu, T. L. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. J. Am. Chem. Soc. 2017, 139, 1207-1214.

25

Wang, W.; Sprenkle, V. Redox flow batteries go organic. Nat. Chem. 2016, 8, 204-206.

26

Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M. D.; Schubert, U. S. Redox-flow batteries: From metals to organic redox-active materials. Angew. Chem., Int. Ed. 2017, 56, 686-711.

27

Kowalski, J. A.; Su, L.; Milshtein, J. D.; Brushett, F. R. Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries. Curr. Opin. Chem. Eng. 2016, 13, 45-52.

28

Wei, X. L.; Pan, W. X.; Duan, W. T.; Hollas, A.; Yang, Z.; Li, B.; Nie, Z. M.; Liu, J.; Reed, D.; Wang, W. et al. Materials and systems for organic redox flow batteries: Status and challenges. ACS Energy Lett. 2017, 2, 2187-2204.

29

Park, M.; Ryu, J.; Wang, W.; Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2016, 2, 16080.

30

Armstrong, C. G.; Toghill, K. E. Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review. Electrochem. Commun. 2018, 91, 19-24.

31

Pakiari, A. H.; Siahrostami, S.; Mohajeri, A. Application of density functional theory for evaluation of standard two-electron reduction potentials in some quinone derivatives. J. Mol. Struct. THEOCHEM 2008, 870, 10-14.

32

Pelzer, K. M.; Cheng, L.; Curtiss, L. A. Effects of functional groups in redox-active organic molecules: A high-throughput screening approach. J. Phys. Chem. C 2017, 121, 237-245.

33

Ding, Y.; Li, Y. F.; Yu, G. H. Exploring bio-inspired quinone-based organic redox flow batteries: A combined experimental and computational study. Chem 2016, 1, 790-801.

34

Bachman, J. E.; Curtiss, L. A.; Assary, R. S. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory. J. Phys. Chem. A 2014, 118, 8852-8860.

35

Er, S.; Suh, C.; Marshak, M. P.; Aspuru-Guzik, A. Computational design of molecules for an all-quinone redox flow battery. Chem. Sci. 2015, 6, 885-893.

36

Yang, C. Z.; Nikiforidis, G.; Park, J. Y.; Choi, J.; Luo, Y.; Zhang, L.; Wang, S. C.; Chan, Y. T.; Lim, J.; Hou, Z. M. et al. Designing redox-stable cobalt-polypyridyl complexes for redox flow batteries: Spin-crossover delocalizes excess charge. Adv. Energy Mater. 2018, 8, 1702897.

37

Yang, Z. J.; Tong, L. C.; Tabor, D. P.; Beh, E. S.; Goulet, M. A.; De Porcellinis, D.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy. Adv. Energy Mater. 2018, 8, 1702056.

38

Quan, M.; Sanchez, D.; Wasylkiw, M. F.; Smith, D. K. Voltammetry of quinones in unbuffered aqueous solution: Reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. J. Am. Chem. Soc. 2007, 129, 12847-12856.

39

Bird, C. L.; Kuhn, A. T. Electrochemistry of the viologens. Chem. Soc. Rev. 1981, 10, 49-82.

40

Hu, B.; Tang, Y. J.; Luo, J.; Grove, G.; Guo, Y. S.; Liu, T. L. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. Chem. Commun. 2018, 54, 6871-6874.

41

Luo, J.; Hu, B.; Debruler, C.; Liu, T. L. A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries. Angew. Chem., Int. Ed. 2018, 57, 231-235.

42

DeBruler, C.; Hu, B.; Moss, J.; Liu, X.; Luo, J.; Sun, Y. J.; Liu, T. L. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries. Chem 2017, 3, 961-978.

43

Penzkofer, A.; Tyagi, A.; Kiermaier, J. Room temperature hydrolysis of lumiflavin in alkaline aqueous solution. J. Photochem. Photobiol. A Chem. 2011, 217, 369-375.

44

Marshall, D. L.; Christian, M. L.; Gryn'ova, G.; Coote, M. L.; Barker, P. J.; Blanksby, S. J. Oxidation of 4-substituted TEMPO derivatives reveals modifications at the 1- and 4-positions. Org. Biomol. Chem. 2011, 9, 4936-4947.

45

Kurreck, H.; Huber, M. Model reactions for photosynthesis-Photoinduced charge and energy transfer between covalently linked porphyrin and quinone units. Angew. Chem., Int. Ed. 1995, 34, 849-866.

46

Scott, D. T.; McKnight, D. M.; Blunt-Harris, E. L.; Kolesar, S. E.; Lovley, D. R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 1998, 32, 2984-2989.

47

Hoober-Burkhardt, L.; Krishnamoorthy, S.; Yang, B.; Murali, A.; Nirmalchandar, A.; Prakash, G. K. S.; Narayanan, S. R. A new michael-reaction-resistant benzoquinone for aqueous organic redox flow batteries. J. Electrochem. Soc. 2017, 164, A600-A607.

48

Ding, Y.; Yu, G. H. A bio-inspired, heavy-metal-free, dual-electrolyte liquid battery towards sustainable energy storage. Angew. Chem., Int. Ed. 2016, 55, 4772-4776.

49

Xu, Y.; Wen, Y. H.; Cheng, J.; Yanga, Y. S.; Xie, Z. L.; Cao, G. P. Novel organic redox flow batteries using soluble quinonoid compounds as positive materials. In Proceedings of 2009 World Non-Grid-Connected Wind Power and Energy Conference, Nanjing, China, 2009.

50

Yang, B.; Hoober-Burkhardt, L.; Wang, F.; Surya Prakash, G. K.; Narayanan, S. R. An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. J. Electrochem. Soc. 2014, 161, A1371-A1380.

51

Wedege, K.; Dražević, E.; Konya, D.; Bentien, A. Organic redox species in aqueous flow batteries: Redox potentials, chemical stability and solubility. Sci. Rep. 2016, 6, 39101.

52

Wang, C. X.; Yang, Z.; Wang, Y. R.; Zhao, P. Y.; Yan, W.; Zhu, G. Y.; Ma, L. B.; Yu, B.; Wang, L.; Li, G. G. et al. High-performance alkaline organic redox flow batteries based on 2-hydroxy-3-carboxy-1, 4-naphthoquinone. ACS Energy Lett. 2018, 3, 2404-2409.

53

Gerhardt, M. R.; Tong, L. C.; Gómez-Bombarelli, R.; Chen, Q.; Marshak, M. P.; Galvin, C. J.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Anthraquinone derivatives in aqueous flow batteries. Adv. Energy Mater. 2017, 7, 1601488.

54

Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X. D.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. A metal-free organic-inorganic aqueous flow battery. Nature 2014, 505, 195-198.

55

Carretero-González, J.; Castillo-Martínez, E.; Armand, M. Highly water-soluble three-redox state organic dyes as bifunctional analytes. Energy Environ. Sci. 2016, 9, 3521-3530.

56

Lin, K. X.; Chen, Q.; Gerhardt, M. R.; Tong, L. C.; Kim, S. B.; Eisenach, L.; Valle, A. W.; Hardee, D.; Gordon, R. G.; Aziz, M. J. et al. Alkaline quinone flow battery. Science 2015, 349, 1529-1532.

57

Kwabi, D. G.; Lin, K. X.; Ji, Y. L.; Kerr, E. F.; Goulet, M. A.; De Porcellinis, D.; Tabor, D. P.; Pollack, D. A.; Aspuru-Guzik, A.; Gordon, R. G. et al. Alkaline quinone flow battery with long lifetime at pH 12. Joule 2018, 2, 1894-1906.

58

Michaelis, L.; Hill, E. S. The viologen indicators. J. Gen. Physiol. 1933, 16, 859-873.

59

Liu, T. B.; Wei, X. L.; Nie, Z. M.; Sprenkle, V.; Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 2016, 6, 1501449.

60

Beh, E. S.; De Porcellinis, D.; Gracia, R. L.; Xia, K. T.; Gordon, R. G.; Aziz, M. J. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2017, 2, 639-644.

61

DeBruler, C.; Hu, B.; Moss, J.; Luo, J.; Liu, T. L. A sulfonate-functionalized viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage. ACS Energy Lett. 2018, 3, 663-668.

62

Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.; Mjalli, F. S.; Saleem, M. Progress in flow battery research and development. J. Electrochem. Soc. 2011, 158, R55-R79.

63

Miura, R. Versatility and specificity in flavoenzymes: Control mechanisms of flavin reactivity. Chem. Rec. 2001, 1, 183-194.

64

Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014, 5, 5335.

65

Lin, K. X.; Gómez-Bombarelli, R.; Beh, E. S.; Tong, L. C.; Chen, Q.; Valle, A.; Aspuru-Guzik, A.; Aziz, M. J.; Gordon, R. G. A redox-flow battery with an alloxazine-based organic electrolyte. Nat. Energy 2016, 1, 16102.

66

Orita, A.; Verde, M. G.; Sakai, M.; Meng, Y. S. A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016, 7, 13230.

67

Winsberg, J.; Stolze, C.; Schwenke, A.; Muench, S.; Hager, M. D.; Schubert, U. S. Aqueous 2, 2, 6, 6-tetramethylpiperidine-N-oxyl catholytes for a high-capacity and high current density oxygen-insensitive hybrid-flow battery. ACS Energy Lett. 2017, 2, 411-416.

68

Janoschka, T.; Martin, N.; Hager, M. D.; Schubert, U. S. An aqueous redox-flow battery with high capacity and power: The TEMPTMA/MV system. Angew. Chem., Int. Ed. 2016, 55, 14427-14430.

69

Chang, Z. J.; Henkensmeier, D.; Chen, R. Y. One-step cationic grafting of 4-hydroxy-TEMPO and its application in a hybrid redox flow battery with a crosslinked PBI membrane. ChemSusChem 2017, 10, 3193-3197.

70

Winsberg, J.; Stolze, C.; Muench, S.; Liedl, F.; Hager, M. D.; Schubert, U. S. TEMPO/phenazine combi-molecule: A redox-active material for symmetric aqueous redox-flow batteries. ACS Energy Lett. 2016, 1, 976-980.

71

Hollas, A.; Wei, X. L.; Murugesan, V.; Nie, Z. M.; Li, B.; Reed, D.; Liu, J.; Sprenkle, V.; Wang, W. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 2018, 3, 508-514.

72

Janoschka, T.; Friebe, C.; Hager, M. D.; Martin, N.; Schubert, U. S. An approach toward replacing vanadium: A single organic molecule for the anode and cathode of an aqueous redox-flow battery. ChemistryOpen 2017, 6, 216-220.

73

Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M. D.; Schubert, U. S. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 2015, 527, 78-81.

74

Winsberg, J.; Janoschka, T.; Morgenstern, S.; Hagemann, T.; Muench, S.; Hauffman, G.; Gohy, J. F.; Hager, M. D.; Schubert, U. S. Poly(TEMPO)/zinc hybrid-flow battery: A novel, "green", high voltage, and safe energy storage system. Adv. Mater. 2016, 28, 2238-2243.

75

Lee, W.; Kwon, B. W.; Kwon, Y. Effect of carboxylic acid-doped carbon nanotube catalyst on the performance of aqueous organic redox flow battery using the modified alloxazine and ferrocyanide redox couple. ACS Appl. Mater. Interfaces 2018, 10, 36882-36891.

76

Montoto, E. C.; Nagarjuna, G.; Hui, J. S.; Burgess, M.; Sekerak, N. M.; Hernández-Burgos, K.; Wei, T. S.; Kneer, M.; Grolman, J.; Cheng, K. J. et al. Redox active colloids as discrete energy storage carriers. J. Am. Chem. Soc. 2016, 138, 13230-13237.

77

Doris, S. E.; Ward, A. L.; Baskin, A.; Frischmann, P. D.; Gavvalapalli, N.; Chénard, E.; Sevov, C. S.; Prendergast, D.; Moore, J. S.; Helms, B. A. Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries. Angew. Chem., Int. Ed. 2017, 56, 1595-1599.

78

Jeon, C.; Han, J. J.; Seo, M. Control of ion transport in sulfonated mesoporous polymer membranes. ACS Appl. Mater. Interfaces 2018, 10, 40854-40862.

Publication history
Copyright
Acknowledgements

Publication history

Received: 08 January 2019
Revised: 19 February 2019
Accepted: 21 February 2019
Published: 21 March 2019
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The work is supported by the Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-MA1702-05.

Return