Journal Home > Volume 12 , Issue 5

Determining atomistic structures of grain boundaries (GBs) is essential to understand structure–property interplay in oxides. Here, different GB superstructures in CuO nanosheets, including (111) and (114) twinning boundaries (TBs) and (002)/(223) GB, are investigated. Unlike the lower-energy stoichiometric (111) TB, both experimental and first-principles investigations reveal a severe segregation of Cu and O vacancies and a nonstoichiometric property at (114) TB, which may facilitate ionic transportation and provide space for elemental segregation. More importantly, the calculated electronic structures have shown the increased conductivity as well as the unanticipated magnetism in both (114) TB and (002)/(223) GB. These findings could contribute to the race towards the property-directing structural design by GB engineering.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Atomistic insight into ordered defect superstructures at novel grain boundaries in CuO nanosheets: From structures to electronic properties

Show Author's information Lulu Zhao1Lei Li1Huaping Sheng1He Zheng1( )Shuangfeng Jia1Weiwei Meng1Huihui Liu1Fan Cao1Huayu Peng1Jianbo Wang1,2( )
School of Physics and Technology,Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University,Wuhan,430072,China;
Science and Technology on High Strength Structural Materials Laboratory,Central South University,Changsha,410083,China;

Abstract

Determining atomistic structures of grain boundaries (GBs) is essential to understand structure–property interplay in oxides. Here, different GB superstructures in CuO nanosheets, including (111) and (114) twinning boundaries (TBs) and (002)/(223) GB, are investigated. Unlike the lower-energy stoichiometric (111) TB, both experimental and first-principles investigations reveal a severe segregation of Cu and O vacancies and a nonstoichiometric property at (114) TB, which may facilitate ionic transportation and provide space for elemental segregation. More importantly, the calculated electronic structures have shown the increased conductivity as well as the unanticipated magnetism in both (114) TB and (002)/(223) GB. These findings could contribute to the race towards the property-directing structural design by GB engineering.

Keywords: first-principles, grain boundaries, atomistic structure, electronic property, scanning transmission electron microscopy (STEM)

References(51)

1

Liu, H. H.; Zheng, H.; Li, L.; Jia, S. F.; Meng, S.; Cao, F.; Lv, Y. H.; Zhao, D. S.; Wang, J. B. Surface-coating-mediated electrochemical performance in CuO nanowires during the sodiation-desodiation cycling. Adv. Mater. Interfaces 2018, 5, 1701255.

2

Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373-386.

3

Liu, H. H.; Cao, F.; Zheng, H.; Sheng, H. P.; Li, L.; Wu, S. J.; Liu, C.; Wang, J. B. In situ observation of the sodiation process in CuO nanowires. Chem. Commun. 2015, 51, 10443-10446.

4

Thongbai, P.; Maensiri, S.; Yamwong, T. Effects of grain, grain boundary, and dc electric field on giant dielectric response in high purity CuO ceramics. J. Appl. Phys. 2008, 104, 036107.

5

Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017, 1, 0052.

6

Feng, Y. Z.; Zheng, X. L. Plasma-enhanced catalytic CuO nanowires for CO oxidation. Nano Lett. 2010, 10, 4762-4766.

7

Lu, L.; Yan, X.; Wang, J. B.; Zheng, H.; Hu, X. Y.; Tang, Y. W.; Jia, Z. Y. Oriented NiO nanosheets with regular hexagonal nanopores. J. Phys. Chem. C 2012, 116, 14638-14643.

8

Luo, L. J.; Lv, G.; Li, B. H.; Hu, X. Y.; Jin, L.; Wang, J. B.; Tang, Y. W. Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application. Thin Solid Films 2010, 518, 5146-5152.

9

Zheng, H.; Wang, J.; Huang, J. Y.; Wang, J. B.; Zhang, Z.; Mao, S. X. Dynamic process of phase transition from wurtzite to zinc blende structure in InAs nanowires. Nano Lett. 2013, 13, 6023-6027.

10

Wu, S. J.; Cao, F.; Zheng, H.; Sheng, H. P.; Liu, C.; Liu, Y.; Zhao, D. S.; Wang, J. B. Fabrication of faceted nanopores in magnesium. Appl. Phys. Lett. 2013, 103, 243101.

11

Jia, S. F.; Zheng, H.; Sang, H. Q.; Zhang, W. J.; Zhang, H.; Liao, L.; Wang, J. B. Self-assembly of KxWO3 nanowires into nanosheets by an oriented attachment mechanism. ACS Appl. Mater. Interfaces 2013, 5, 10346-10351.

12

Zhou, J. P.; Zhao, D. S.; Wang, R. H.; Sun, Z. F.; Wang, J. B.; Gui, J. N.; Zheng, O. In situ observation of ageing process and new morphologies of continuous precipitates in AZ91 magnesium alloy. Mater. Lett. 2007, 61, 4707-4710.

13

Tang, Y. W.; Jia, Z. Y.; Jiang, Y.; Li, L. Y.; Wang, J. B. Simple template-free solution route for the synthesis of Ni(SO4)0.3(OH)1.4 nanobelts and their thermal degradation. Nanotechnology 2006, 17, 5686-5690.

14

Jang, H. W.; Ortiz, D.; Baek, S. H.; Folkman, C. M.; Das, R. R.; Shafer, P.; Chen, Y. B.; Nelson, C. T.; Pan, X. Q.; Ramesh, R. et al. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO thin films. Adv. Mater. 2009, 21, 817-823.

15

Wang, J. B.; Li, L. Y.; Xiong, D. X.; Wang, R. H.; Zhao, D. S.; Min, C. P.; Yu, Y.; Ma, L. L. High spatially resolved morphological, structural and spectroscopical studies on copper oxide nanocrystals. Nanotechnology 2007, 18, 075705.

16

Nie, A. M.; Gan, L. Y.; Cheng, Y. C.; Li, Q. Q.; Yuan, Y. F.; Mashayek, F.; Wang, H. T.; Klie, R.; Schwingenschlogl, U.; Shahbazian-Yassar, R. Twin boundary-assisted lithium ion transport. Nano Lett. 2015, 15, 610-615.

17

Moriwake, H.; Kuwabara, A.; Fisher, C. A. J.; Huang, R.; Hitosugi, T.; Ikuhara, Y. H.; Oki, H.; Ikuhara, Y. First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material, LiCoO2. Adv. Mater. 2013, 25, 618-622.

18

Long, H.; Fang, G. J.; Li, S. Z.; Mo, X. M.; Wang, H. N.; Huang, H. H.; Jiang, Q. K.; Wang, J. B.; Zhao, X. Z. A ZnO/ZnMgO multiple-quantum-well ultraviolet random laser diode. IEEE Electron Dev. Lett. 2011, 32, 54-56.

19

Ikuhara, Y. Grain boundary atomic structures and light-element visualization in ceramics: Combination of Cs-corrected scanning transmission electron microscopy and first-principles calculations. J. Electron Microsc. 2011, 60, S173-S188.

20

Buban, J. P.; Matsunaga, K.; Chen, J.; Shibata, N.; Ching, W. Y.; Yamamoto, T.; Ikuhara, Y. Grain boundary strengthening in alumina by rare earth impurities. Science 2006, 311, 212-215.

21

Li, B. H.; Luo, L. J.; Xiao, T.; Hu, X. Y.; Lu, L.; Wang, J. B.; Tang, Y. W. Zn2SnO4-SnO2 heterojunction nanocomposites for dye-sensitized solar cells. J. Alloys Compd. 2011, 509, 2186-2191.

22

Liu, S. Y.; Choy, W. C. H.; Jin, L.; Leung, Y. P.; Zheng, G. P.; Wang, J. B.; Soh, A. K. Triple-crystal zinc selenide nanobelts. J. Phys. Chem. C 2007, 111, 9055-9059.

23

Jin, L.; Choy, W. C. H.; Leung, Y. P.; Yuk, T. I.; Ong, H. C.; Wang, J. B. Synthesis and analysis of abnormal wurtzite ZnSe nanowheels. J. Appl. Phys. 2007, 102, 044302.

24

Tu, C. H.; Chang, C. C.; Wang, C. H.; Fang, H. C.; Huang, M. R. S.; Li, Y. C.; Chang, H. J.; Lu, C. H.; Chen, Y. C.; Wang, R. C. et al. Resistive memory devices with high switching endurance through single filaments in Bi-crystal CuO nanowires. J. Alloys Compd. 2014, 615, 754-760.

25

Liebscher, C. H.; Stoffers, A.; Alam, M.; Lymperakis, L.; Cojocaru-Mirédin, O.; Gault, B.; Neugebauer, J.; Dehm, G.; Scheu, C.; Raabe, D. Strain-induced asymmetric line segregation at faceted Si grain boundaries. Phys. Rev. Lett. 2018, 121, 015702.

26

Herbig, M.; Raabe, D.; Li, Y. J.; Choi, P.; Zaefferer, S.; Goto, S. Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys. Rev. Lett. 2014, 112, 126103.

27

Deuermeier, J.; Wardenga, H. F.; Morasch, J.; Siol, S.; Nandy, S.; Calmeiro, T.; Martins, R.; Klein, A.; Fortunato, E. Highly conductive grain boundaries in copper oxide thin films. J. Appl. Phys. 2016, 119, 235303.

28

Younas, M.; Nadeem, M.; Idrees, M.; Akhtar, M. J. Jahn-Teller assisted polaronic hole hopping as a charge transport mechanism in CuO nanograins. Appl. Phys. Lett. 2012, 100, 152103.

29

Putjuso, T.; Manyum, P.; Yamwong, T.; Thongbai, P.; Maensiri, S. Effect of annealing on electrical responses of electrode and surface layer in giant-permittivity CuO ceramic. Solid State Sci. 2011, 13, 2007-2010.

30

Sheng, H. P.; Zheng, H.; Jia, S. F.; Li, L.; Cao, F.; Wu, S. J.; Han, W.; Liu, H. H.; Zhao, D. S.; Wang, J. B. Twin structures in CuO nanowires. J. Appl. Cryst. 2016, 49, 462-467.

31

Cao, F.; Jia, S. F.; Zheng, H.; Zhao, L. L.; Liu, H. H.; Li, L.; Zhao, L. G.; Hu, Y. M.; Gu, H. S.; Wang, J. B. Thermal-induced formation of domain structures in CuO nanomaterials. Phys. Rev. Materials 2017, 1, 053401.

32

Koch C. T. Determination of core structure periodicity and point defect density along dislocations. Ph. D. Dissertation, Arizona State University, Tempe, AZ, USA, 2002.

33

Malis, T.; Cheng, S. C.; Egerton, R. F. EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron Microsc. Technol. 1988, 8, 193-200.

34

Raebiger, H.; Lany, S.; Zunger, A. Origins of the p-type nature and cation deficiency in Cu2O and related materials. Phys. Rev. B 2007, 76, 045209.

35

Wu, D. X.; Zhang, Q. M.; Tao, M. LSDA+U study of cupric oxide: Electronic structure and native point defects. Phys. Rev. B 2006, 73, 235206.

36

Sun, R.; Wang, Z. C.; Saito, M.; Shibata, N.; Ikuhara, Y. Atomistic mechanisms of nonstoichiometry-induced twin boundary structural transformation in titanium dioxide. Nat. Commun. 2015, 6, 7120.

37

Kingery, W. D. Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: I, grain-boundary characteristics, structure, and electrostatic potential. J. Am. Ceram. Soc. 1974, 57, 1-8.

38

Bai, X. M.; Voter, A. F.; Hoagland, R. G.; Nastasi, M.; Uberuaga, B. P. Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 2010, 327, 1631-1634.

39

Leapman, R. D.; Grunes, L. A.; Fejes, P. L. Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B 1982, 26, 614-635.

40

Waddington, W. G; Rez, P.; Grant, I. P.; Humphreys, C. J. White lines in the L2, 3 electron-energy-loss and X-ray absorption spectra of 3d transition metals. Phys. Rev. B 1986, 34, 1467-1473.

41

Graetz, J.; Ahn, C. C.; Ouyang, H.; Rez, P.; Fultz, B. White lines and d-band occupancy for the 3d transition-metal oxides and lithium transition-metal oxides. Phys. Rev. B 2004, 69, 235103.

42

Sparrow, T. G.; Williams, B. G.; Rao, C. N. R.; Thomas, J. M. L3/L2 white-line intensity ratios in the electron energy-loss spectra of 3d transition-metal oxides. Chem. Phys. Lett. 1984, 108, 547-550.

43

Ray, S. C. Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties. Sol. Energy Mater. Sol. Cells 2001, 68, 307-312.

44

Koffyberg, F. P.; Benko, F. A. A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. J. Appl. Phys. 1982, 53, 1173-1177.

45

Hardee, K. L.; Bard, A. J. Semiconductor electrodes: X. Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions. J. Electrochem. Soc. 1977, 124, 215-224.

46

Liao, Z. L.; Gauquelin, N.; Green, R. J.; Macke, S.; Gonnissen, J.; Thomas, S.; Zhong, Z. C.; Li, L.; Si, L.; van Aert, S. et al. Thickness dependent properties in oxide heterostructures driven by structurally induced metal-oxygen hybridization variations. Adv. Funct. Mater. 2017, 27, 1606717.

47

Kan, D.; Aso, R.; Sato, R.; Haruta, M.; Kurata, H.; Shimakawa, Y. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nat. Mater. 2016, 15, 432-437.

48

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

49

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

50

Mishra, A. K.; Roldan, A.; de Leeuw, N. H. CuO surfaces and CO2 activation: A dispersion-corrected DFT+U study. J. Phys. Chem. C 2016, 120, 2198-2214.

51

Hu, J.; Li, D. D.; Lu, J. G.; Wu, R. Q. Effects on electronic properties of molecule adsorption on CuO surfaces and nanowires. J. Phys. Chem. C 2010, 114, 17120-17126.

File
12274_2019_2354_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 December 2018
Revised: 17 February 2019
Accepted: 20 February 2019
Published: 11 March 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51671148, 51271134, J1210061, 11674251, 51501132, and 51601132), the Hubei Provincial Natural Science Foundation of China (Nos. 2016CFB446 and 2016CFB155), the Fundamental Research Funds for the Central Universities, the CERS-1-26 (CERS-China Equipment and Education Resources System), the China Postdoctoral Science Foundation (No. 2014T70734), the Open Research Fund of Science and Technology on High Strength Structural Materials Laboratory (Central South University), and the Suzhou Science and Technology project (No. SYG201619).

Return