Journal Home > Volume 12 , Issue 5

Enzyme-based anticancer therapy is more attractive for the less side effect than conventional chemotherapy. However, the poor stability and low membrane permeability of enzymes during the intracellular delivery are constraints for its practical applications. In this work, we synthesized novel near-infrared (NIR)-responsive core–shell-structured Prussian blue@fibrous SiO2 (PBFS) nanoparticles as the carrier of superoxide dismutase (SOD) and a glutathione (GSH)-activated Fenton reagent (DiFe). The PBFS nanoparticles are further modified with a GSH-responsive cationic polymer (poly(2-(acryloyloxy)-N, N-dimethyl-N-(4-(((2-((2-(((4-methyl-2-oxo-2H-chromen-7-yl)carbamoyl)oxy)ethyl)disulfaneyl)ethoxy)carbonyl)amino)benzyl)ethan-1-aminium, PSS) containing disulfide bonds and fluorophores. After SOD and DiFe are loaded on the PBFS-PSS nanoparticles, dual chemodynamic/photothermal therapeutic nanoparticulate systems (PBFS-PSS/DiFe/SOD) are obtained. In vitro experiments show that PBFS-PSS/DiFe/SOD nanoparticles have good biocompatibility and can be tracked under fluorescence microscope during the intracellular delivery process in MCF-7 tumor cells due to the GSH-activated release of fluorophores. They also exhibit high efficiency in NIR photothermal conversion and GSH-activated Fenton reaction in tumor cells, thus achieving high-efficient killing effect of tumor cells based on the combination of photothermal and chemodynamic therapeutic performance (PTT and CDT). This work offers a novel pathway to construct a visual multifunctional nanomedicine platform for future cancer therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Visual dual chemodynamic/photothermal therapeutic nanoplatform based on superoxide dismutase plus Prussian blue

Show Author's information Shan LeiJinxing ChenKun ZengMozhen Wang( )Xuewu Ge( )
CAS Key Laboratory of Soft Matter Chemistry,Department of Polymer Science and Engineering, University of Science and Technology of China,Hefei,230026,China;

Abstract

Enzyme-based anticancer therapy is more attractive for the less side effect than conventional chemotherapy. However, the poor stability and low membrane permeability of enzymes during the intracellular delivery are constraints for its practical applications. In this work, we synthesized novel near-infrared (NIR)-responsive core–shell-structured Prussian blue@fibrous SiO2 (PBFS) nanoparticles as the carrier of superoxide dismutase (SOD) and a glutathione (GSH)-activated Fenton reagent (DiFe). The PBFS nanoparticles are further modified with a GSH-responsive cationic polymer (poly(2-(acryloyloxy)-N, N-dimethyl-N-(4-(((2-((2-(((4-methyl-2-oxo-2H-chromen-7-yl)carbamoyl)oxy)ethyl)disulfaneyl)ethoxy)carbonyl)amino)benzyl)ethan-1-aminium, PSS) containing disulfide bonds and fluorophores. After SOD and DiFe are loaded on the PBFS-PSS nanoparticles, dual chemodynamic/photothermal therapeutic nanoparticulate systems (PBFS-PSS/DiFe/SOD) are obtained. In vitro experiments show that PBFS-PSS/DiFe/SOD nanoparticles have good biocompatibility and can be tracked under fluorescence microscope during the intracellular delivery process in MCF-7 tumor cells due to the GSH-activated release of fluorophores. They also exhibit high efficiency in NIR photothermal conversion and GSH-activated Fenton reaction in tumor cells, thus achieving high-efficient killing effect of tumor cells based on the combination of photothermal and chemodynamic therapeutic performance (PTT and CDT). This work offers a novel pathway to construct a visual multifunctional nanomedicine platform for future cancer therapy.

Keywords: fluorescence, Prussian blue, copper-zinc superoxide dismutase, Fenton reagent, near-infrared (NIR) photothermal therapy

References(52)

1

Yan, M.; Du, J. J.; Gu, Z.; Liang, M.; Hu, Y. F.; Zhang, W. J.; Priceman, S.; Wu, L.; Zhou, Z. H.; Liu, Z. et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotech. 2010, 5, 48-53.

2

Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579-591.

3

Nelson, S. K.; Bose, S. K.; Grunwald, G. K.; Myhill, P.; McCord, J. M. The induction of human superoxide dismutase and catalase in vivo: A fundamentally new approach to antioxidant therapy. Free Radical Biol. Med. 2006, 40, 341-347.

4

Tsang, C. K.; Liu, Y.; Thomas, J.; Zhang, Y. J.; Zheng, X. F. S. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun. 2014, 5, 3446.

5

Cerutti, P. A. Prooxidant states and tumor promotion. Science 1985, 227, 375-381.

6

Ma, P. A.; Xiao, H. H.; Yu, C.; Liu, J. H.; Cheng, Z. Y.; Song, H. Q.; Zhang, X. Y.; Li, C. X.; Wang, J. Q.; Gu, Z. et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 2017, 17, 928-937.

7

Dai, Y. L.; Yang, Z.; Cheng, S. Y.; Wang, Z. L.; Zhang, R. L.; Zhu, G. Z.; Wang, Z. T.; Yung, B. C.; Tian, R.; Jacobson, O. et al. Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles. Adv. Mater. 2018, 30, 1704877.

8

Yang, Z.; Dai, Y. L.; Yin, C.; Fan, Q. L.; Zhang, W. S.; Song, J.; Yu, G. C.; Tang, W.; Fan, W. P.; Yung, B. C. et al. Activatable semiconducting theranostics: Simultaneous generation and ratiometric photoacoustic imaging of reactive oxygen species in vivo. Adv. Mater. 2018, 30, 1707509.

9

Imlay, J.; Chin, S. M.; Linn, S. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 1988, 240, 640-642.

10

Kwon, B.; Han, E.; Yang, W.; Cho, W.; Yoo, W.; Hwang, J.; Kwon, B. M.; Lee, D. Nano-fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents. ACS Appl. Mater. Interfaces 2016, 8, 5887-5897.

11

Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101-2106.

12

Kartha, S.; Yan, L. S.; Weisshaar, C. L.; Ita, M. E.; Shuvaev, V. V.; Muzykantov, V. R.; Tsourkas, A.; Winkelstein, B. A.; Cheng, Z. L. Superoxide dismutase-loaded porous polymersomes as highly efficient antioxidants for treating neuropathic pain. Adv. Healthcare Mater. 2017, 6, 1700500.

13

Chen, Y. P.; Chen, C. T.; Hung, Y.; Chou, C. M.; Liu, T. P.; Liang, M. R.; Chen, C. T.; Mou, C. Y. A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: Superoxide dismutase. J. Am. Chem. Soc. 2013, 135, 1516-1523.

14

Wang, X.; Niu, D. C.; Li, P.; Wu, Q.; Bo, X. W.; Liu, B. J.; Bao, S.; Su, T.; Xu, H. X.; Wang, Q. G. Dual-enzyme-loaded multifunctional hybrid nanogel system for pathological responsive ultrasound imaging and T2-weighted magnetic resonance imaging. ACS Nano 2015, 9, 5646-5656.

15

Liu, W. L.; Liu, T.; Zou, M. Z.; Yu, W. Y.; Li, C. X.; He, Z. Y.; Zhang, M. K.; Liu, M. D.; Li, Z. H.; Feng, J. et al. Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy. Adv. Mater. 2018, 30, 1802006.

16

Nukolova, N. V.; Aleksashkin, A. D.; Abakumova, T. O.; Morozova, A. Y.; Gubskiy, I. L.; Kirzhanova, E. A.; Abakumov, M. A.; Chekhonin, V. P.; Klyachko, N. L.; Kabanov, A. V. Multilayer polyion complex nanoformulations of superoxide dismutase 1 for acute spinal cord injury. J. Control. Release 2018, 270, 226-236.

17

Huang, L.; Ao, L. J.; Hu, D. H.; Wang, W.; Sheng, Z. H.; Su, W. Magneto-plasmonic nanocapsules for multimodal-imaging and magnetically guided combination cancer therapy. Chem. Mater. 2016, 28, 5896-5904.

18

Li, Z. L.; Hu, Y.; Miao, Z.; Xu, H.; Li, C.; Zhao, Y.; Li, Z.; Chang, M.; Ma, Z.; Sun, Y. et al. Dual-stimuli responsive bismuth nanoraspberries for multimodal imaging and combined cancer therapy. Nano Lett. 2018, 18, 6778-6788.

19

Wang, Y. Z.; Song, Y. J.; Zhu, G. X.; Zhang, D. C.; Liu, X. W. Highly biocompatible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy. Chin. Chem. Lett. 2018, 29, 1685-1688.

20

Wang, Z. R.; He, Q.; Zhao, W. G.; Luo, J. W.; Gao, W. P. Tumor-homing, pH-and ultrasound-responsive polypeptide-doxorubicin nanoconjugates overcome doxorubicin resistance in cancer therapy. J. Control. Release 2017, 264, 66-75.

21

Cho, H. Y.; Lee, T.; Yoon, J.; Han, Z. L.; Rabie, H.; Lee, K. B.; Su, W. W.; Choi, J. W. Magnetic oleosome as a functional lipophilic drug carrier for cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 9301-9309.

22

Lai, J. P.; Shah, B. P.; Garfunkel, E.; Lee, K. B. Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano 2013, 7, 2741-2750.

23

Xu, Z. G.; Liu, S. Y.; Kang, Y. J.; Wang, M. F. Glutathione-and pH-responsive nonporous silica prodrug nanoparticles for controlled release and cancer therapy. Nanoscale 2015, 7, 5859-5868.

24

Xie, Y. Y.; Wang, J.; Wang, M. Z.; Ge, X. W. Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution. J. Hazard. Mater. 2015, 297, 66-73.

25

Chen, J. X.; Lei, S.; Xie, Y. Y.; Wang, M. Z.; Yang, J.; Ge, X. W. Fabrication of high-performance magnetic lysozyme-imprinted microsphere and its NIR-responsive controlled release property. ACS Appl. Mater. Interfaces 2015, 7, 28606-28615.

26

Chen, J. X; Lei, S.; Zeng, K.; Wang, M. Z.; Asif, A.; Ge, X. W. Catalase-imprinted Fe3O4/Fe@fibrous SiO2/polydopamine nanoparticles: An integrated nanoplatform of magnetic targeting, magnetic resonance imaging, and dual-mode cancer therapy. Nano Res. 2017, 10, 2351-2363.

27

Marzenell, P.; Hagen, H.; Sellner, L.; Zenz, T.; Grinyte, R.; Pavlov, V.; Daum, S.; Mokhir, A. Aminoferrocene-based prodrugs and their effects on human normal and cancer cells as well as bacterial cells. J. Med. Chem. 2013, 56, 6935-6944.

28

Hagen, H.; Marzenell, P.; Jentzsch, E.; Wenz, F.; Veldwijk, M. R.; Mokhir, A. Aminoferrocene-based prodrugs activated by reactive oxygen species. J. Med. Chem. 2012, 55, 924-934.

29

Wu, Q.; He, Z. G.; Wang, X.; Zhang, Q.; Wei, Q. C.; Ma, S. Q.; Ma, C.; Li, J. Y.; Wang, Q. G. Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nat. Commun 2019, 10, 240.

30

Li, W. P.; Su, C. H.; Tsao, L. C.; Chang, C. T.; Hsu, Y. P.; Yeh, C. S. Controllable CO release following near-infrared light-induced cleavage of iron carbonyl derivatized prussian blue nanoparticles for CO-assisted synergistic treatment. ACS Nano 2016, 10, 11027-11036.

31

Chen, W. S.; Zeng, K.; Liu, H.; Ouyang, J.; Wang, L. Q.; Liu, Y.; Wang, H.; Deng, L.; Liu, Y. N. Cell membrane camouflaged hollow Prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer. Adv. Funct. Mater. 2017, 27, 1605795.

32

Zhou, B.; Jiang, B. P.; Sun, W. Y.; Wei, F. M.; He, Y.; Liang, H.; Shen, X. C. Water-dispersible Prussian blue hyaluronic acid nanocubes with near-infrared photoinduced singlet oxygen production and photothermal activities for cancer theranostics. ACS Appl. Mater. Interfaces 2018, 10, 18036-18049.

33

Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603-619.

34

Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723-1732.

35

Mandel, R.; Ryser, H. J. P.; Niaki, B.; Ghani, F.; Shen, W. C. Isolation of variants of Chinese hamster ovary cells with abnormally low levels of GSH: Decreased ability to cleave endocytosed disulfide bonds. J. Cell. Physiol. 1991, 149, 60-65.

36

Gandra, N.; Wang, D. D.; Zhu, Y.; Mao, C. B. Virus-mimetic cytoplasm-cleavable magnetic/silica nanoclusters for enhanced gene delivery to mesenchymal stem cells. Angew. Chem., Int. Ed. 2013, 52, 11278-11281.

37

Staben, L. R.; Koenig, S. G.; Lehar, S. M.; Vandlen, R.; Zhang, D. L.; Chuh, J.; Yu, S. F.; Ng, C.; Guo, J.; Liu, Y. Z. et al. Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody-drug conjugates. Nat. Chem. 2016, 8, 1112-1119.

38

Liu, X.; Xiang, J. J.; Zhu, D. C.; Jiang, L. M.; Zhou, Z. X.; Tang, J. B.; Liu, X. R.; Huang, Y. Z.; Shen, Y. Q. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Adv. Mater. 2016, 28, 1743-1752.

39

Truong, N. P.; Jia, Z. F.; Burges, M.; McMillan, N. A. J.; Monteiro, M. J. Self-catalyzed degradation of linear cationic poly(2-dimethylaminoethyl acrylate) in water. Biomacromolecules 2011, 12, 1876-1882.

40

Truong, N. P.; Gu, W. Y.; Prasadam, I.; Jia, Z. F.; Crawford, R.; Xiao, Y.; Monteiro, M. J. An influenza virus-inspired polymer system for the timed release of siRNA. Nat. Commun. 2013, 4, 1902.

41

Kaneti, Y. V.; Chen, C. Y.; Liu, M. S.; Wang, X. C.; Yang, J. L.; Taylor, R. A.; Jiang, X. C.; Yu, A. B. Carbon-coated gold nanorods: A facile route to biocompatible materials for photothermal applications. ACS Appl. Mater. Interfaces 2015, 7, 25658-25668.

42

Zhang, R. L.; Zhao, J.; Han, G. M.; Liu, Z. J.; Liu, C.; Zhang, C.; Liu, B. H.; Jiang, C. L.; Liu, R. Y.; Zhao, T. T. et al. Real-time discrimination and versatile profiling of spontaneous reactive oxygen species in living organisms with a single fluorescent probe. J. Am. Chem. Soc. 2016, 138, 3769-3778.

43

Wang, Q.; Tian, S. L.; Ning, P. Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene. Ind. Eng. Chem. Res. 2014, 53, 643-649.

44

Lin, F. X.; Zeng, K.; Yang, W. X.; Wang, M. Z.; Rong, J. L.; Xie, J.; Zhao, Y.; Ge, X. W. γ-Ray-radiation-scissioned chitosan as a gene carrier and its improved in vitro gene transfection performance. Chin. J. Chem. Phys. 2017, 30, 231-238.

45

Lin, M. T.; Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443, 787-795.

46

Wang, S. H.; Shang, L.; Li, L. L.; Yu, Y. J.; Chi, C. W.; Wang, K.; Zhang, J.; Shi, R.; Shen, H. Y.; Waterhouse, G. I. N. et al. Metal-organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy. Adv. Mater. 2016, 28, 8379-8387.

47

Qu, X. W.; Qiu, P. H.; Zhu, Y.; Yang, M. Y.; Mao, C. B. Guiding nanomaterials to tumors for breast cancer precision medicine: From tumor-targeting small-molecule discovery to targeted nanodrug delivery. NPG Asia Mater. 2017, 9, e452.

48

Simón-Gracia, L.; Hunt, H.; Teesalu, T. Peritoneal carcinomatosis targeting with tumor homing peptides. Molecules 2018, 23, 1190.

49

Hu, M.; Furukawa, S.; Ohtani, R.; Sukegawa, H.; Nemoto, Y.; Reboul, J.; Kitagawa, S.; Yamauchi, Y. Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew. Chem., Int. Ed. 2012, 124, 1008-1012.

50

Zhang, Y. Y.; Ang, C. Y.; Li, M. H.; Tan, S. Y.; Qu, Q. Y.; Zhao, Y. L. Polymeric prodrug grafted hollow mesoporous silica nanoparticles encapsulating near-infrared absorbing dye for potent combined photothermal-chemotherapy. ACS Appl. Mater. Interfaces 2016, 8, 6869-6879.

51

Wang, C.; Wang, J. Q.; Zhang, X. D.; Yu, S. J.; Wen, D.; Hu, Q. Y.; Ye, Y. Q.; Bomba, H.; Hu, X. L.; Liu, Z. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 2018, 10, eaan3682.

52

Li, Y. M.; Liu, G. H.; Wang, X. R.; Hu, J. M.; Liu, S. Y. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents. Angew. Chem., Int. Ed. 2016, 55, 1760-1764.

File
12274_2019_2348_MOESM1_ESM.pdf (4.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 November 2018
Revised: 02 February 2019
Accepted: 18 February 2019
Published: 06 March 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We thank Prof. Z. S. Ge and Prof. L. H. Yang in the Department of Polymer Science and Engineering of USTC for their kind help in providing the 808 nm semiconductor laser device and infrared imaging devices, respectively. This work was supported by the National Natural Science Foundation of China (Nos. 51473152 and 51573174).

Return