Journal Home > Volume 12 , Issue 9

Solar hydrogen production by the photoelectrochemical method promises a means to store solar energy. While it is generally understood that the process is highly sensitive to the nature of the interface between the semiconductor and the electrolyte, a detailed understanding of this interface is still missing. For instance, few prior studies have established a clear relationship between the interface energetics and the catalyst loading amount. Here we aim to study this relationship on a prototypical Si-based photoelectrochemical system. Two types of interfaces were examined, one with GaN nanowires as a protection layer and one without. It was found that when GaN was present, higher Pt loading (> 0.1 μg/cm2) led to not only better water reduction (and, hence, hydrogen evolution) kinetics but also more favorable interface energetics for greater photovoltages. In the absence of the protection layer, by stark contrast, increased Pt loading exhibited no measurable influence on the interface energetics, and the main difference was observed only in the hydrogen evolution kinetics. The study sheds new light on the importance of interface engineering for further improvement of photoelectrochemical systems, especially concerning the role of catalysts and protection layers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system

Show Author's information Yumin He1Srinivas Vanka2,4Tianyue Gao1Da He1Jeremy Espano1Yanyan Zhao1Qi Dong1Chaochao Lang1Yongjie Wang2Thomas W. Hamann3Zetian Mi2Dunwei Wang1( )
Department of ChemistryMerkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut HillMassachusetts02467USA
Department of Electrical Engineering and Computer ScienceUniversity of Michigan, 1301 Beal Avenue, Ann ArborMichigan48109USA
Department of ChemistryMichigan State University, East LansingMichigan48824USA
Department of Electrical and Computer EngineeringMcGill University, 3480 University Street, MontrealQuebecH3A 0E9Canada

Abstract

Solar hydrogen production by the photoelectrochemical method promises a means to store solar energy. While it is generally understood that the process is highly sensitive to the nature of the interface between the semiconductor and the electrolyte, a detailed understanding of this interface is still missing. For instance, few prior studies have established a clear relationship between the interface energetics and the catalyst loading amount. Here we aim to study this relationship on a prototypical Si-based photoelectrochemical system. Two types of interfaces were examined, one with GaN nanowires as a protection layer and one without. It was found that when GaN was present, higher Pt loading (> 0.1 μg/cm2) led to not only better water reduction (and, hence, hydrogen evolution) kinetics but also more favorable interface energetics for greater photovoltages. In the absence of the protection layer, by stark contrast, increased Pt loading exhibited no measurable influence on the interface energetics, and the main difference was observed only in the hydrogen evolution kinetics. The study sheds new light on the importance of interface engineering for further improvement of photoelectrochemical systems, especially concerning the role of catalysts and protection layers.

Keywords: water splitting, Si, nanowires, photoelectrochemistry, hydrogen evolution catalyst

References(44)

1

Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

2

Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z. B.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983-2002.

3

He, Y. M.; Wang, D. W. Toward practical solar hydrogen production. Chem 2018, 4, 405-408.

4

He, Y. M.; Hamann, T.; Wang, D. W. Thin film photoelectrodes for solar water splitting. Chem. Soc. Rev. , in press, DOI: 10.1039/C8CS00868J.

5

Thorne, J. E.; Li, S.; Du, C.; Qin, G. W.; Wang, D. W. Energetics at the surface of photoelectrodes and its influence on the photoelectrochemical properties. J. Phys. Chem. Lett. 2015, 6, 4083-4088.

6

Du, C.; Yang, X. G.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, D. W. Hematite-based water splitting with low turn-on voltages. Angew. Chem., Int. Ed. 2013, 52, 12692-12695.

7

Du, C.; Zhang, M.; Jang, J. -W.; Liu, Y.; Liu, G. -Y.; Wang, D. W. Observation and alteration of surface states of hematite photoelectrodes. J. Phys. Chem. C 2014, 118, 17054-17059.

8

Lin, F. D.; Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 2014, 13, 81-86.

9

Qiu, J. J.; Hajibabaei, H.; Nellist, M. R.; Laskowski, F. A. L.; Hamann, T. W.; Boettcher, S. W. Direct in situ measurement of charge transfer processes during photoelectrochemical water oxidation on catalyzed hematite. ACS Cent. Sci. 2017, 3, 1015-1025.

10

Qiu, J. J.; Hajibabaei, H.; Nellist, M. R.; Laskowski, F. A. L.; Oener, S. Z.; Hamann, T. W.; Boettcher, S. W. Catalyst deposition on photoanodes: The roles of intrinsic catalytic activity, catalyst electrical conductivity, and semiconductor morphology. ACS Energy Lett. 2018, 3, 961-969.

11

Nellist, M. R.; Laskowski, F. A. L.; Qiu, J. J.; Hajibabaei, H.; Sivula, K.; Hamann, T. W.; Boettcher, S. W. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy 2018, 3, 46-52.

12

Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug, D. R.; Durrant, J. R. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 2011, 133, 14868-14871.

13

Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula, K.; Grätzel, M.; Klug, D. R.; Durrant, J. R. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. USA 2012, 109, 15640-15645.

14

Pesci, F. M.; Cowan, A. J.; Alexander, B. D.; Durrant, J. R.; Klug, D. R. Charge carrier dynamics on mesoporous WO3 during water splitting. J. Phys. Chem. Lett. 2011, 2, 1900-1903.

15

Carroll, G. M.; Gamelin, D. R. Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe2O3 photoanodes. J. Mater. Chem. A 2016, 4, 2986-2994.

16

Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes. J. Am. Chem. Soc. 2012, 134, 16693-16700.

17

Riha, S. C.; Klahr, B. M.; Tyo, E. C.; Seifert, S.; Vajda, S.; Pellin, M. J.; Hamann, T. W.; Martinson, A. B. F. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano 2013, 7, 2396-2405.

18

Cummings, C. Y.; Marken, F.; Peter, L. M.; Tahir, A. A.; Wijayantha, K. G. U. Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes. Chem. Commun. 2012, 48, 2027-2029.

19

Zachäus, C.; Abdi, F. F.; Peter, L. M.; van de Krol, R. Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem. Sci. 2017, 8, 3712-3719.

20

Li, W.; He, D.; Sheehan, S. W.; He, Y. M.; Thorne, J. E.; Yao, X. H.; Brudvig, G. W.; Wang, D. W. Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy Environ. Sci. 2016, 9, 1794-1802.

21

Thorne, J. E.; Jang, J. -W.; Liu, E. Y.; Wang, D. W. Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem. Sci. 2016, 7, 3347-3354.

22

He, Y. M.; Ma, P. Y.; Zhu, S. S.; Liu, M. D.; Dong, Q.; Espano, J.; Yao, X. H.; Wang, D. W. Photo-induced performance enhancement of tantalum nitride for solar water oxidation. Joule 2017, 1, 831-842.

23

Thorne, J. E.; Zhao, Y. Y.; He, D.; Fan, S. Z.; Vanka, S.; Mi, Z. T.; Wang, D. W. Understanding the role of co-catalysts on silicon photocathodes using intensity modulated photocurrent spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 29653-29659.

24

Gao, Y.; Hamann, T. W. Quantitative hole collection for photoelectrochemical water oxidation with CuWO4. Chem. Commun. 2017, 53, 1285-1288.

25

Liu, G. J.; Ye, S.; Yan, P. L.; Xiong, F. -Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 2016, 9, 1327-1334.

26

Vanka, S.; Arca, E.; Cheng, S. B.; Sun, K.; Botton, G. A.; Teeter, G.; Mi, Z. T. High efficiency Si photocathode protected by multifunctional GaN nanostructures. Nano Lett. 2018, 18, 6530-6537.

27

Fan, S. Z.; AlOtaibi, B.; Woo, S. Y.; Wang, Y. J.; Botton, G. A.; Mi, Z. T. High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode. Nano Lett. 2015, 15, 2721-2726.

28

Wang, Y. C.; Fan, S. Z.; AlOtaibi, B.; Wang, Y. J.; Li, L.; Mi, Z. T. A monolithically integrated gallium nitride nanowire/silicon solar cell photocathode for selective carbon dioxide reduction to methane. Chem. -Eur. J. 2016, 22, 8809-8813.

29

Cheng, Q.; Fan, W.; He, Y.; Ma, P.; Vanka, S.; Fan, S.; Mi, Z.; Wang, D. Photorechargeable high voltage redox battery enabled by Ta3N5 and GaN/Si dual-photoelectrode. Adv. Mater. 2017, 29, 1700312.

30

Chu, S.; Ou, P. F.; Ghamari, P.; Vanka, S.; Zhou, B. W.; Shih, I.; Song, J.; Mi, Z. T. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 2018, 140, 7869-7877.

31

Yuan, G. B.; Aruda, K.; Zhou, S.; Levine, A.; Xie, J.; Wang, D. W. Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion. Angew. Chem., Int. Ed. 2011, 50, 2334-2338.

32

Liu, R.; Yuan, G. B.; Joe, C. L.; Lightburn, T. E.; Tan, K. L.; Wang, D. W. Silicon nanowires as photoelectrodes for carbon dioxide fixation. Angew. Chem., Int. Ed. 2012, 51, 6709-6712.

33

Liu, R.; Stephani, C.; Han, J. J.; Tan, K. L.; Wang, D. W. Silicon nanowires show improved performance as photocathode for catalyzed carbon dioxide photofixation. Angew. Chem., Int. Ed. 2013, 52, 4225-4228.

34

Dai, P. C.; Xie, J.; Mayer, M. T.; Yang, X. G.; Zhan, J. H.; Wang, D. W. Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. Angew. Chem., Int. Ed. 2013, 52, 11119-11123.

35

Kemppainen, E.; Bodin, A.; Sebok, B.; Pedersen, T.; Seger, B.; Mei, B.; Bae, D.; Vesborg, P. C. K.; Halme, J.; Hansen, O. et al. Scalability and feasibility of photoelectrochemical H2 evolution: The ultimate limit of Pt nanoparticle as an HER catalyst. Energy Environ. Sci. 2015, 8, 2991-2999.

36

Ponomarev, E. A.; Peter, L. M. A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). J. Electroanal. Chem. 1995, 396, 219-226.

37

Peter, L. M.; Ponomarev, E. A.; Fermín, D. J. Intensity-modulated photocurrent spectroscopy: Reconciliation of phenomenological analysis with multistep electron transfer mechanisms. J. Electroanal. Chem. 1997, 427, 79-96.

38

Dai, P. C.; Li, W.; Xie, J.; He, Y. M.; Thorne, J.; McMahon, G.; Zhan, J. H.; Wang, D. W. Forming buried junctions to enhance the photovoltage generated by cuprous oxide in aqueous solutions. Angew. Chem., Int. Ed. 2014, 53, 13493-13497.

39

Nielander, A. C.; Shaner, M. R.; Papadantonakis, K. M.; Francis, S. A.; Lewis, N. S. A taxonomy for solar fuels generators. Energy Environ. Sci. 2015, 8, 16-25.

40

Lewis, N. S. Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorg. Chem. 2005, 44, 6900-6911.

41

Liu, G. J.; Shi, J. Y.; Zhang, F. X.; Chen, Z.; Han, J. F.; Ding, C. M.; Chen, S. S.; Wang, Z. L.; Han, H. X.; Li, C. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew. Chem., Int. Ed. 2014, 53, 7295-7299.

42

Ding, C. M.; Shi, J. Y.; Wang, Z. L.; Li, C. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 2017, 7, 675-688.

43

Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005-1009.

44

Kang, D.; Young, J. L.; Lim, H.; Klein, W. E.; Chen, H. D.; Xi, Y. Z.; Gai, B. J.; Deutsch, T. G.; Yoon, J. Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2017, 2, 17043.

File
12274_2019_2346_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 January 2019
Revised: 14 February 2019
Accepted: 17 February 2019
Published: 11 March 2019
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors gratefully acknowledge research support from the HydroGEN Advanced Water Splitting Materials Consortium, established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Award Number DE-EE0008086 XPS and TEM was performed at the Center for Nanoscale Systems (CNS) in Harvard University.

Return