Journal Home > Volume 12 , Issue 5

Despite the progress on the analysis of miRNA either in vitro or in vivo, intracellular imaging of lowly expressed microRNA remains a challenge. Here we develop a novel dual-enzyme-propelled DNA walking nanomachine, which is tailored to accomplish this mission. The nanomachine is constructed with nanoparticles-loaded DNA tracks, on which the targeted miRNA working as a single-foot DNA walker can move autonomously under the catalysis of two cooperative enzymes. Cleavage of the DNA tracks like a "burnt-bridge" mechanism is thereafter triggered, resulting in an amplified fluorescent signal. After the comprehensive study and optimization of the DNA nanomachine, miR-892b, a significantly down-regulated miRNA in breast cancer cells, is selected as a model target. Sensitivity detection in vitro is achieved with a superior detection limit of 4 pM. While being delivered into cells, the DNA nanomachine is available for the imaging of the lowly expressed microRNA, which is totally missing using the conventional fluorescence in situ hybridization (FISH) method. Up-regulation or down-regulation of the miRNA by exogenous regulatory factors can be also well evaluated. This DNA nanomachine provides a competitive approach for the analysis of miRNA, and has the potential to be extended to some other biomolecules.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dual-enzyme-propelled unbounded DNA walking nanomachine for intracellular imaging of lowly expressed microRNA

Show Author's information Tianshu Chen1,2,§Yaoyao Chen1,§Huinan Chen1Fan Zhang1Qianqian Zhang1Guifang Chen1,3( )Xiaoli Zhu1( )
Center for Molecular Recognition and Biosensing,School of Life Sciences, Shanghai University,Shanghai,200444,China;
Institute of Biomedical Engineering,School of Communication and Information Engineering, Shanghai University,Shanghai,200444,China;
Department of Bioengineering,University of Washington,Seattle, WA,98195,USA;

§ Tianshu Chen and Yaoyao Chen contributed equally to this work.

Abstract

Despite the progress on the analysis of miRNA either in vitro or in vivo, intracellular imaging of lowly expressed microRNA remains a challenge. Here we develop a novel dual-enzyme-propelled DNA walking nanomachine, which is tailored to accomplish this mission. The nanomachine is constructed with nanoparticles-loaded DNA tracks, on which the targeted miRNA working as a single-foot DNA walker can move autonomously under the catalysis of two cooperative enzymes. Cleavage of the DNA tracks like a "burnt-bridge" mechanism is thereafter triggered, resulting in an amplified fluorescent signal. After the comprehensive study and optimization of the DNA nanomachine, miR-892b, a significantly down-regulated miRNA in breast cancer cells, is selected as a model target. Sensitivity detection in vitro is achieved with a superior detection limit of 4 pM. While being delivered into cells, the DNA nanomachine is available for the imaging of the lowly expressed microRNA, which is totally missing using the conventional fluorescence in situ hybridization (FISH) method. Up-regulation or down-regulation of the miRNA by exogenous regulatory factors can be also well evaluated. This DNA nanomachine provides a competitive approach for the analysis of miRNA, and has the potential to be extended to some other biomolecules.

Keywords: microRNA, nanoparticles, DNA walker, nanomachine, imaging analysis

References(29)

1

Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281-297.

2

Bartel, D. P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215-233.

3

Poy, M. N.; Eliasson, L.; Krutzfeldt, J.; Kuwajima, S.; Ma, X. S.; MacDonald, P. E.; Pfeffer, S.; Tuschl, T.; Rajewsky, N.; Rorsman, P. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004, 432, 226-230.

4

Lu, J.; Getz, G.; Miska, E. A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B. L.; Mak, R. H.; Ferrando, A. A. et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834-838.

5

Esquela-Kerscher, A.; Slack, F. J. Oncomirs-microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259-269.

6

Lujambio, A.; Lowe, S. W. The microcosmos of cancer. Nature 2012, 482, 347-355.

7

Andorfer, C. A.; Necela, B. M.; Thompson, E. A.; Perez, E. A. MicroRNA signatures: Clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol. Med. 2011, 17, 313-319.

8

Silahtaroglu, A. N.; Nolting, D.; Dyrskjøt, L.; Berezikov, E.; Møller, M.; Tommerup, N.; Kauppinen, S. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat. Protoc. 2007, 2, 2520-2528.

9

Zhang, J. P.; Liu, Y. L.; Zhi, X.; Zhang, C. L.; Liu, T. F.; Cui, D. X. DNA-templated silver nanoclusters locate microRNAs in the nuclei of gastric cancer cells. Nanoscale 2018, 10, 11079-11090.

10

Chen, C. F.; Ridzon, D. A.; Broomer, A. J.; Zhou, Z. H.; Lee, D. H.; Nguyen, J. T.; Barbisin, M.; Xu, N. L.; Mahuvakar, V. R.; Andersen, M. R. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179.

11

Peltier, H. J.; Latham, G. J. Normalization of microRNA expression levels in quantitative RT-PCR assays: Identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008, 14, 844-852.

12

Yang, Y. J.; Huang, J.; Yang, X. H.; He, X. X.; Quan, K.; Xie, N. L.; Ou, M.; Wang, K. M. Gold nanoparticle based hairpin-locked-DNAzyme probe for amplified miRNA imaging in living cells. Anal. Chem. 2017, 89, 5850-5856.

13

Wang, L. D.; Deng, R. J.; Li, J. H. Target-fueled DNA walker for highly selective miRNA detection. Chem. Sci. 2015, 6, 6777-6782.

14

Yin, P.; Yan, H.; Daniell, X. G.; Turberfield, A. J.; Reif, J. H. A unidirectional DNA walker that moves autonomously along a track. Angew. Chem., Int. Ed. 2004, 43, 4906-4911.

15

Feng, C.; Wang, Z. H.; Chen, T. S.; Chen, X. X.; Mao, D. S.; Zhao, J.; Li, G. X. A dual-enzyme-assisted three-dimensional DNA walking machine using T4 polynucleotide kinase as activators and application in polynucleotide kinase assays. Anal. Chem. 2018, 90, 2810-2815.

16

Chen, J.; Zuehlke, A.; Deng, B.; Peng, H.; Hou, X.; Zhang, H. A target-triggered DNAzyme motor enabling homogeneous, amplified detection of proteins. Anal. Chem. 2017, 89, 12888-12895.

17

Chen, Y. Q.; Song, Y. Y.; He, Z. Y.; Wang, Z. J.; Liu, W. T.; Wang, F. A.; Zhang, X. L.; Zhou, X. pH-controlled DNAzymes: Rational design and their applications in DNA-machinery devices. Nano Res. 2016, 9, 3084-3092.

18

Qu, X. M.; Zhu, D.; Yao, G. B.; Su, S.; Chao, J.; Liu, H. J.; Zuo, X. L.; Wang, L. H.; Shi, J. Y.; Wang, L. H. et al. An exonuclease Ⅲ-powered, on-particle stochastic DNA walker. Angew. Chem., Int. Ed. 2017, 56, 1855-1858.

19

Zhang, H. Q.; Lai, M. D.; Zuehlke, A.; Peng, H. Y.; Li, X. F.; Le, X. C. Binding-induced DNA nanomachines triggered by proteins and nucleic acids. Angew. Chem., Int. Ed. 2015, 54, 14326-14330.

20

Bath, J.; Green, S. J.; Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem., Int. Ed. 2005, 44, 4358-4361.

21

Liu, Z. J.; Zhao, J.; Zhang, R. L.; Han, G. M.; Zhang, C.; Liu, B. H.; Zhang, Z. P.; Han, M. Y.; Gao, X. H. Cross-platform cancer cell identification using telomerase-specific spherical nucleic acids. ACS Nano 2018, 12, 3629-3637.

22

Ma, P. Q.; Liang, C. P.; Zhang, H. H.; Yin, B. C.; Ye, B. C. A highly integrated DNA nanomachine operating in living cells powered by an endogenous stimulus. Chem. Sci. 2018, 9, 3299-3304.

23

Liang, C. P.; Ma, P. Q.; Liu, H.; Guo, X. G.; Yin, B. C.; Ye, B. C. Rational engineering of a dynamic, entropy-driven DNA nanomachine for intracellular microRNA imaging. Angew. Chem., Int. Ed. 2017, 56, 9077-9081.

24

Li, C.; Li, X. X.; Wei, L. M.; Liu, M. Y.; Chen, Y. Y.; Li, G. X. Simple electrochemical sensing of attomolar proteins using fabricated complexes with enhanced surface binding avidity. Chem. Sci. 2015, 6, 4311-4317.

25

Li, F.; Lin, Y. W.; Lau, A.; Tang, Y. N.; Chen, J. B.; Le, X. C. Binding-induced molecular amplifier as a universal detection platform for biomolecules and biomolecular interaction. Anal. Chem. 2018, 90, 8651-8657.

26

Peng, H. Y.; Li, X. F.; Zhang, H. Q.; Le, X. C. A microRNA-initiated DNAzyme motor operating in living cells. Nat. Commun. 2017, 8, 14378.

27

Yehl, K.; Mugler, A.; Vivek, S.; Liu, Y.; Zhang, Y.; Fan, M. Z.; Weeks, E. R.; Salaita, K. High-speed DNA-based rolling motors powered by RNase H. Nat. Nanotechnol. 2016, 11, 184-190.

28

Yang, X. L.; Tang, Y. N.; Mason, S. D.; Chen, J. B.; Li, F. Enzyme-powered three-dimensional DNA nanomachine for DNA walking, payload release, and biosensing. ACS Nano 2016, 10, 2324-2330.

29

Jiang, L. L.; Yu, L.; Zhang, X.; Lei, F. Y.; Wang, L.; Liu, X. X.; Wu, S.; Zhu, J. R.; Wu, G. Y.; Cao, L. X. et al. miR-892b silencing activates NF-κB and promotes aggressiveness in breast cancer. Cancer Res. 2016, 76, 1101-1111.

File
12274_2019_2344_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 December 2018
Revised: 17 February 2019
Accepted: 17 February 2019
Published: 07 March 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81873539 and 21575088) and the Natural Science Foundation of Shanghai (No. 14ZR1416500).

Return