Journal Home > Volume 12 , Issue 8

Checkpoint blockade based immune therapy has shown to be effective but benefit only the minority of patients whose tumors have been pre-infiltrated by T cells. To overcome this obstacles, a PEG-modified Bi2Se3 nanocage (NC) loaded with imiquimod (R848), which could efficiently destroy the tumors thus producing enough tumor-associated antigens (TAA) and with the existence of R848, a toll-like-receptor-7 agonist, could generate strong anti-cancer immune responses is reported in this study. Moreover, immunogenic Bi2Se3 NC-PEG/R848 mediated photothermal therapy (PTT) sensitizes tumors to checkpoint inhibition mediated by a PD-L1 antibody, not only ablating cancer cells upon NIR laser but also causing strong anti-cancer immunity to suppress distant tumor growth post PTT. Both in vitro and in vivo experiments demonstrate that the Bi2Se3 NC-PEG/R848 could effectively activate a PTT-induced immune response as well as silence immune resistance based on PD-L1 checkpoint blockade to ablate the primary tumor and further inhibit the tumor metastasis. Bi2Se3 NC reported here exhibits high photothermal conversion efficiency and stability, as well as competent drug loading capacity with large hollow structures and high surface area. Our study not only provides a facial way to synthesize Bi2Se3 NC, but also offers an alternative strategy for tumor metastasis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Immune-adjuvant loaded Bi2Se3 nanocage for photothermal-improved PD-L1 checkpoint blockade immune-tumor metastasis therapy

Show Author's information Yilin SongYidan WangSiyu WangYu ChengQianglan LuLifang YangFengping TanNan Li( )
Tianjin Key Laboratory of Drug Delivery & High-Efficiency,School of Pharmaceutical Science and Technology, Tianjin University,Tianjin,300072,China;

Abstract

Checkpoint blockade based immune therapy has shown to be effective but benefit only the minority of patients whose tumors have been pre-infiltrated by T cells. To overcome this obstacles, a PEG-modified Bi2Se3 nanocage (NC) loaded with imiquimod (R848), which could efficiently destroy the tumors thus producing enough tumor-associated antigens (TAA) and with the existence of R848, a toll-like-receptor-7 agonist, could generate strong anti-cancer immune responses is reported in this study. Moreover, immunogenic Bi2Se3 NC-PEG/R848 mediated photothermal therapy (PTT) sensitizes tumors to checkpoint inhibition mediated by a PD-L1 antibody, not only ablating cancer cells upon NIR laser but also causing strong anti-cancer immunity to suppress distant tumor growth post PTT. Both in vitro and in vivo experiments demonstrate that the Bi2Se3 NC-PEG/R848 could effectively activate a PTT-induced immune response as well as silence immune resistance based on PD-L1 checkpoint blockade to ablate the primary tumor and further inhibit the tumor metastasis. Bi2Se3 NC reported here exhibits high photothermal conversion efficiency and stability, as well as competent drug loading capacity with large hollow structures and high surface area. Our study not only provides a facial way to synthesize Bi2Se3 NC, but also offers an alternative strategy for tumor metastasis.

Keywords: Bi2Se3 nanocage, R848, checkpoint blockade, photothermal-immune therapy, anti-tumor metastasis

References(37)

1

Gottesman, M. M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 2002, 53, 615–627.

2

Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275–284.

3

Dearnaley, D. P.; Khoo, V. S.; Norman, A. R.; Meyer, L.; Nahum, A.; Tait, D.; Yarnold, J.; Horwich, A. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: A randomised trial. Lancet 1999, 353, 267–272.

4

Dearnaley, D. P.; Hall, E.; Lawrence, D.; Huddart, R. A.; Eeles, R.; Nutting, C. M.; Gadd, J.; Warrington, A.; Bidmead, M.; Horwich, A. Phase Ⅲ pilot study of dose escalation using conformal radiotherapy in prostate cancer: PSA control and side effects. Br. J. Cancer 2005, 92, 488–498.

5

Rosenberg, S. A.; Yang, J. C.; Restifo, N. P. Cancer immunotherapy: Moving beyond current vaccines. Nat. Med. 2004, 10, 909–915.

6

Melief, C. J. M.; van Hall, T.; Arens, R.; Ossendorp F.; van der Burg, S. H. Therapeutic cancer vaccines. J. Clin. Invest. 2015, 125, 3401–3412.

7

Lollini, P. L.; Cavallo, F.; Nanni P.; Forni, G. Vaccines for tumour prevention. Nat. Rev. Cancer 2006, 6, 204–216.

8

Suckow, M. A.; Wolter, W. R.; Sailes, V. T. Inhibition of prostate cancer metastasis by administration of a tissue vaccine. Clin. Exp. Metastasis 2008, 25, 913–918.

9

McNutt, M. Cancer immunotherapy. Science 2013, 342, 1417.

10

Huang, A. C.; Postow, M. A.; Orlowski, R. J.; Mick, R.; Bengsch, B.; Manne, S.; Xu, W.; Harmon, S.; Giles, J. R.; Wenz, B. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017, 545, 60–65.

11

Dougan, M.; Dranoff, G. Immune therapy for cancer. Annu. Rev. Immunol. 2009, 27, 83–117.

12

Sharma, P.; Allison, J. P. The future of immune checkpoint therapy. Science 2015, 348, 56–61.

13

Keir, M. E.; Butte, M. J.; Freeman, G. J.; Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704.

14

Hui, E. F.; Cheung, J.; Zhu, J.; Su, X. L.; Taylor, M. J.; Wallweber, H. A.; Sasmal, D. K.; Huang, J.; Kim, J. M.; Mellman, I. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017, 355, 1428–1433.

15

Zou, W. P.; Wolchok, J. D.; Chen, L. P. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 2016, 8, 328rv4.

16

Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264.

17

Topalian, S. L.; Taube, J. M.; Anders, R. A.; Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 2016, 16, 275–287.

18

Keir, M. E.; Francisco, L. M.; Sharpe, A. H. PD-1 and its ligands in T-cell immunity. Curr. Opin. Immunol. 2007, 19, 309–314.

19

He, C. B.; Duan, X. P.; Guo, N. N.; Chan, C.; Poon, C.; Weichselbaum, R. R.; Lin, W. B. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 2016, 7, 12499.

20

Castano, A. P.; Mroz, P.; Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535–545.

21

Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.

22

Castano, A. P.; Mroz, P.; Wu, M. X.; Hamblin, M. R. Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proc. Natl. Acad. Sci. USA 2008, 105, 5495–5500.

23

Wang, D. G.; Wang, T. T.; Liu, J. P.; Yu, H. J.; Jiao, S.; Feng, B.; Zhou, F. Y.; Fu, Y. L.; Yin, Q.; Zhang, P. C. et al. Acid-activatable versatile micelleplexes for PD-L1 blockade-enhanced cancer photodynamic immunotherapy. Nano Lett. 2016, 16, 5503–5513.

24

Duan, X. P.; Chan, C.; Guo, N. N.; Han, W. B.; Weichselbaum, R. R.; Lin, W. B. Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J. Am. Chem. Soc. 2016, 138, 16686–16695.

25

Dong, H. D.; Strome, S. E.; Salomao, D. R.; Tamura, H.; Hirano, F.; Flies, D. B.; Roche, P. C.; Lu, J.; Zhu, G. F.; Tamada, K. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002, 8, 793–800.

26

Song, Y. L.; Wang, J. P.; Liu, L.; Sun, Q.; You, Q.; Cheng, Y.; Wang, Y. D.; Wang, S. Y.; Tan, F. P.; Li, N. One-pot synthesis of a bismuth selenide hexagon nanodish complex for multimodal imaging-guided combined antitumor phototherapy. Mol. Pharmaceutics 2018, 15, 1941–1953.

27

Kasturi, S. P.; Skountzou, I.; Albrecht, R. A.; Koutsonanos, D.; Hua, T.; Nakaya, H. I.; Ravindran, R.; Stewart, S.; Alam, M.; Kwissa, M. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 2011, 470, 543–547.

28

Le Mercier, I.; Poujol, D.; Sanlaville, A.; Sisirak, V.; Gobert, M.; Durand, I.; Dubois, B.; Treilleux, I.; Marvel, J.; Vlach, J. et al. Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment. Cancer Res. 2013, 73, 4629–4640.

29

Li, N.; Zhang, Y.; Zhao, H. Y.; Liu, Z. Q.; Zhang, X. Y.; Du, Y. P. Synthesis of high-quality α-MnSe nanostructures with superior lithium storage properties. Inorg. Chem. 2016, 55, 2765–2770.

30

Song, G. S.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu. Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater. 2016, 14, 2716–2723.

31

Prencipe, G.; Tabakman, S. M.; Welsher, K.; Liu, Z.; Goodwin, A. P.; Zhang, L.; Henry, J.; Dai, H. J. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 2009, 131, 4783–4787.

32

Yue, C. X.; Zhang, C. L.; Alfranca, G.; Yang, Y.; Jiang, X. Q.; Yang, Y. M.; Pan, F.; de la Fuente, J. M.; Cui, D. X. Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy. Theranostics 2016, 6, 456–469.

33

Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W.; Lee, S. T.; Liu, Z. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. 2011, 123, 7523–7528.

34

Wherry, E. J.; Teichgräber, V.; Becker, T. C.; Masopust, D.; Kaech, S. M.; Antia, R.; von Andrian, U. H.; Ahmed, R. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 2003, 4, 225– 234.

35

Robinson, H. L.; Amara, R. R. T cell vaccines for microbial infections. Nat. Med. 2005, 11, S25–S32.

36

Kaech, S. M.; Wherry, E. J.; Ahmed, R. Effector and memory T-cell differentiation: Implications for vaccine development. Nat. Rev. Immunol. 2002, 2, 251–262.

37

Schoenborn, J. R.; Wilson, C. B. Regulation of interferon-γ during innate and adaptive immune responses. Adv. Immunol. 2007, 96, 41–101.

File
12274_2019_2341_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 October 2018
Revised: 09 February 2019
Accepted: 15 February 2019
Published: 07 March 2019
Issue date: August 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Project (973 Program) of China (No. 2014CB932200), the National Natural Science Foundation of China (Nos. 81503016, 81771880, and 81401453), and the Application Foundation and Cutting-edge Technologies Research Project of Tianjin (Young Program) (No. 15JCQNJC13800).

Return