Journal Home > Volume 12 , Issue 5

In this work, we utilize a bottom-up approach to synthesize nitrogen self-doped graphene quantum dots (NGQDs) from a single glucosamine precursor via an eco-friendly microwave-assisted hydrothermal method. Structural and optical properties of as-produced NGQDs are further modified using controlled ozone treatment. Ozone-treated NGQDs (Oz-NGQDs) are reduced in size to 5.5 nm with clear changes in the lattice structure and ID/IG Raman ratios due to the introduction/alteration of oxygen-containing functional groups detected by Fourier-transform infrared (FTIR) spectrometer and further verified by energy dispersive X-ray spectroscopy (EDX) showing increased atomic/weight percentage of oxygen atoms. Along with structural modifications, GQDs experience decrease in ultraviolet–visible (UV–vis) absorption coupled with progressive enhancement of visible (up to 16 min treatment) and near-infrared (NIR) (up to 45 min treatment) fluorescence. This allows fine-tuning optical properties of NGQDs for solar cell applications yielding controlled emission increase, while controlled emission quenching was achieved by either blue laser or thermal treatment. Optimized Oz-NGQDs were further used to form a photoactive layer of solar cells with a maximum efficiency of 2.64% providing a 6-fold enhancement over untreated NGQD devices and a 3-fold increase in fill factor/current density. This study suggests simple routes to alter and optimize optical properties of scalably produced NGQDs to boost the photovoltaic performance of solar cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nitrogen-doped graphene quantum dots: Optical properties modification and photovoltaic applications

Show Author's information Md Tanvir Hasan1,§Roberto Gonzalez-Rodriguez1,§Conor Ryan1Kristof Pota2Kayla Green2Jeffery L. Coffer2Anton V. Naumov1( )
Department of Physics and Astronomy,Texas Christian University, TCU Box 298840, Fort Worth,Texas,76129,USA;
Department of Chemistry and Biochemistry,Texas Christian University, TCU Box 298860, Fort Worth,Texas,76129,USA;

§ Md Tanvir Hasan and Roberto Gonzalez-Rodriguez contributed equally to this work.

Abstract

In this work, we utilize a bottom-up approach to synthesize nitrogen self-doped graphene quantum dots (NGQDs) from a single glucosamine precursor via an eco-friendly microwave-assisted hydrothermal method. Structural and optical properties of as-produced NGQDs are further modified using controlled ozone treatment. Ozone-treated NGQDs (Oz-NGQDs) are reduced in size to 5.5 nm with clear changes in the lattice structure and ID/IG Raman ratios due to the introduction/alteration of oxygen-containing functional groups detected by Fourier-transform infrared (FTIR) spectrometer and further verified by energy dispersive X-ray spectroscopy (EDX) showing increased atomic/weight percentage of oxygen atoms. Along with structural modifications, GQDs experience decrease in ultraviolet–visible (UV–vis) absorption coupled with progressive enhancement of visible (up to 16 min treatment) and near-infrared (NIR) (up to 45 min treatment) fluorescence. This allows fine-tuning optical properties of NGQDs for solar cell applications yielding controlled emission increase, while controlled emission quenching was achieved by either blue laser or thermal treatment. Optimized Oz-NGQDs were further used to form a photoactive layer of solar cells with a maximum efficiency of 2.64% providing a 6-fold enhancement over untreated NGQD devices and a 3-fold increase in fill factor/current density. This study suggests simple routes to alter and optimize optical properties of scalably produced NGQDs to boost the photovoltaic performance of solar cells.

Keywords: optical properties, solar cells, nitrogen-doped graphene quantum dots, ozone treatment, photovoltaics

References(65)

1

Sun, J.; Yang, S. W.; Wang, Z. Y.; Shen, H.; Xu, T.; Sun, L. T.; Li, H.; Chen, W. W.; Jiang, X. Y.; Ding, G. Q. et al. Ultra-high quantum yield of graphene quantum dots: Aromatic-nitrogen doping and photoluminescence mechanism. Part. Part. Syst. Charact. 2015, 32, 434-440.

2

Niu, F. S.; Xu, Y. H.; Liu, J. X.; Song, Z. Q.; Liu, M. L.; Liu, J. Q. Controllable electrochemical/electroanalytical approach to generate nitrogen-doped carbon quantum dots from varied amino acids: Pinpointing the utmost quantum yield and the versatile photoluminescent and electrochemiluminescent applications. Electrochim. Acta 2017, 236, 239-251.

3

Qu, D.; Zheng, M.; Zhang, L. G.; Zhao, H. F.; Xie, Z. G.; Jing, X. B.; Haddad, R. E.; Fan, H. Y.; Sun, Z. C. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep. 2014, 4, 5294.

4

Liu, Q.; Guo, B. D.; Rao, Z. Y.; Zhang, B. H.; Gong, J. R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013, 13, 2436-2441.

5

Hasan, M. T.; Gonzalez-Rodriguez, R.; Ryan, C.; Faerber, N.; Coffer, J. L.; Naumov, A. V. Photo-and electroluminescence from nitrogen-doped and nitrogen-sulfur codoped graphene quantum dots. Adv. Funct. Mater. 2018, 28, 1804337.

6

Zhou, L.; Geng, J. L.; Liu, B. Graphene quantum dots from polycyclic aromatic hydrocarbon for bioimaging and sensing of Fe3+ and hydrogen peroxide. Part. Part. Syst. Charact. 2013, 30, 1086-1092.

7

Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. -K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013, 7, 6858-6867.

8

Shang, W. H.; Zhang, X. Y.; Zhang, M.; Fan, Z. T.; Sun, Y.; Han, M.; Fan, L. Z. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale 2014, 6, 5799-5806.

9

Coe, S.; Woo, W. -K.; Bawendi, M.; Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800-803.

10

Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S. H.; Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 2002, 295, 1506-1508.

11

Son, D. I.; Kwon, B. W.; Park, D. H.; Seo, W. -S.; Yi, Y.; Angadi, B.; Lee, C. -L.; Choi, W. K. Emissive ZnO-graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 2012, 7, 465-471.

12

Moon, B. J.; Jang, D.; Yi, Y.; Lee, H.; Kim, S. J.; Oh, Y.; Lee, S. H.; Park, M.; Lee, S.; Bae, S. Multi-functional nitrogen self-doped graphene quantum dots for boosting the photovoltaic performance of BHJ solar cells. Nano Energy 2017, 34, 36-46.

13

Carolan, D.; Rocks, C.; Padmanaban, D. B.; Maguire, P.; Svrcek, V.; Mariotti, D. Environmentally friendly nitrogen-doped carbon quantum dots for next generation solar cells. Sustainable Energy Fuels 2017, 1, 1611-1619.

14

Gupta, V.; Chaudhary, N.; Srivastava, R.; Sharma, G. D.; Bhardwaj, R.; Chand, S. Luminscent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 2011, 133, 9960-9963.

15

Wang, H.; Sun, P. F.; Cong, S.; Wu, J.; Gao, L. J.; Wang, Y.; Dai, X.; Yi, Q. H.; Zou, G. F. Nitrogen-doped carbon dots for "green" quantum dot solar cells. Nanoscale Res. Lett. 2016, 11, 27.

16

Alivisatos, A. P.; Gu, W. W.; Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 2005, 7, 55-76.

17

Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858-6860.

18

Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.

19

Tabish, T. A.; Scotton, C. J.; Ferguson, D. C. J.; Lin, L. X.; van der Veen, A.; Lowry, S.; Ali, M.; Jabeen, F.; Ali, M.; Winyard, P. G. et al. Biocompatibility and toxicity of graphene quantum dots for potential application in photodynamic therapy. Nanomedicine 2018, 13, 1923-1937.

20

Zeng, Z. P.; Chen, S. F.; Tan, T. T. Y.; Xiao, F. -X. Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal. Today 2018, 315, 171-183.

21

Lu, Q.; Zhang, Y. J.; Liu, S. Q. Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of methylene blue under visible-light irradiation. J. Mater. Chem. A 2015, 3, 8552-8558.

22

Tao, H. Q.; Yang, K.; Ma, Z.; Wan, J. M.; Zhang, Y. J.; Kang, Z. H.; Liu, Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 2012, 8, 281-290.

23

Dong, Y. Q.; Chen, C. Q.; Zheng, X. T.; Gao, L. L.; Gui, Z. M.; Yang, H. B.; Guo, C. X.; Chi, Y. W.; Li, C. M. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem. 2012, 22, 8764-8766.

24

Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. -T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430-4434.

25

Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu, L. T. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 2011, 23, 776-780.

26

Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 2011, 133, 15221-15223.

27

Liu, C. J.; Zhang, P.; Tian, F.; Li, W. C.; Li, F.; Liu, W. G. One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. J. Mater. Chem. 2011, 21, 13163-13167.

28

Zhai, X. Y.; Zhang, P.; Liu, C. J.; Bai, T.; Li, L. M.; Dai, L. M.; Liu, W. G. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 2012, 48, 7955-7957.

29

Wang, L.; Zhu, S. -J.; Wang, H. -Y.; Qu, S. -N.; Zhang, Y. -L.; Zhang, J. -H.; Chen, Q. -D.; Xu, H. -L.; Han, W.; Yang, B. et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 2014, 8, 2541-2547.

30

Wang, L.; Wang, H. Y.; Wang, Y.; Zhu, S. J.; Zhang, Y. L.; Zhang, J. H.; Chen, Q. D.; Han, W.; Xu, H. L.; Yang, B. et al. Direct observation of quantum-confined graphene-like states and novel hybrid states in graphene oxide by transient spectroscopy. Adv. Mater. 2013, 25, 6539-6545.

31

Yang, Z. -C.; Li, X.; Wang, J. Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process. Carbon 2011, 49, 5207-5212.

32

Bao, L.; Zhang, Z. -L.; Tian, Z. -Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B. P.; Pang, D. -W. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism. Adv. Mater. 2011, 23, 5801-5806.

33

Shang, J. Z.; Ma, L.; Li, J. W.; Ai, W.; Yu, T.; Gurzadyan, G. G. The origin of fluorescence from graphene oxide. Sci. Rep. 2012, 2, 792.

34

Mirtchev, P.; Henderson, E. J.; Soheilnia, N.; Yip, C. M.; Ozin, G. A. Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO2 solar cells. J. Mater. Chem. 2012, 22, 1265-1269.

35

Zhang, Y. -Q.; Ma, D. -K.; Zhang, Y. -G.; Chen, W.; Huang, S. -M. N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells. Nano Energy 2013, 2, 545-552.

36

Briscoe, J.; Marinovic, A.; Sevilla, M.; Dunn, S.; Titirici, M. Biomass-derived carbon quantum dot sensitizers for solid-state nanostructured solar cells. Angew. Chem., Int. Ed. 2015, 54, 4463-4468.

37

Kwon, W.; Lee, G.; Do, S.; Joo, T.; Rhee, S. W. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials. Small 2014, 10, 506-513.

38

Narayanan, R.; Deepa, M.; Srivastava, A. K. Förster resonance energy transfer and carbon dots enhance light harvesting in a solid-state quantum dot solar cell. J. Mater. Chem. A 2013, 1, 3907-3918.

39

Qian, F. L.; Li, X. M.; Tang, L. B.; Lai, S. K.; Lu, C. Y.; Lau, S. P. Potassium doping: Tuning the optical properties of graphene quantum dots. AIP Adv. 2016, 6, 075116.

40

Dong, Y.; Zhang, S.; Shi, L. L.; Chen, Y. X.; Ma, J.; Guo, S. S.; Chen, X. H.; Song, H. H. The photoluminescence of step-wise reduced graphene oxide quantum dots. Mater. Chem. Phys. 2018, 203, 125-132.

41

Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 2013, 7, 1239-1245.

42

Basak, T.; Basak, T. Effect of carrier doping and external electric field on the optical properties of graphene quantum dots. IOP Conf. Ser. : Mater. Sci. Eng. 2018, 310, 012014.

43

Hai, X.; Feng, J.; Chen, X. W.; Wang, J. H. Tuning the optical properties of graphene quantum dots for biosensing and bioimaging. J. Mater. Chem. B 2018, 6, 3219-3234.

44

Zhao, M. L. Direct synthesis of graphene quantum dots with different fluorescence properties by oxidation of graphene oxide using nitric acid. Appl. Sci. 2018, 8, 1303.

45

Yu, P.; Wen, X. M.; Toh, Y. -R.; Tang, J. Temperature-dependent fluorescence in carbon dots. J. Phys. Chem. C 2012, 116, 25552-25557.

46

Tian, Y.; Li, L.; Guo, X.; Wójtowicz, A.; Estevez, L.; Krysmann, M. J.; Kelarakis, A. Dramatic photoluminescence quenching in carbon dots induced by cyclic voltammetry. Chem. Commun. 2018, 54, 9067-9070.

47

Gao, F. H.; Liu, F. C.; Bai, X. H.; Xu, X. F.; Kong, W. J.; Liu, J.; Lv, F. Z.; Long, L. Z.; Yang, Y.; Li, M. Tuning the photoluminescence of graphene oxide quantum dots by photochemical fluorination. Carbon 2019, 141, 331-338.

48

Hasan, M. T.; Senger, B. J.; Mulford, P.; Ryan, C.; Doan, H.; Gryczynski, Z.; Naumov, A. V. Modifying optical properties of reduced/graphene oxide with controlled ozone and thermal treatment in aqueous suspensions. Nanotechnology 2017, 28, 065705.

49

Hasan, M. T.; Senger, B. J.; Ryan, C.; Culp, M.; Gonzalez-Rodriguez, R.; Coffer, J. L.; Naumov, A. V. Optical band gap alteration of graphene oxide via ozone treatment. Sci. Rep. 2017, 7, 6411.

50

Wang, L.; Wang, Y. L.; Xu, T.; Liao, H. B.; Yao, C. J.; Liu, Y.; Li, Z.; Chen, Z. W.; Pan, D. Y.; Sun, L. T. et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 2014, 5, 5357.

51

Yang, Q. M.; Duan, J. L.; Yang, W.; Li, X. M.; Mo, J. H.; Yang, P. Z.; Tang, Q. W. Nitrogen-doped carbon quantum dots from biomass via simple one-pot method and exploration of their application. Appl. Surf. Sci. 2018, 434, 1079-1085.

52

Fan, X. B.; Peng, W. C.; Li, Y.; Li, X. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490-4493.

53

Cai, W. W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D. X.; Velamakanni, A.; An, S. J.; Stoller, M. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 2008, 321, 1815-1817.

54

He, H. Y.; Riedl, T.; Lerf, A.; Klinowski, J. Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem. 1996, 100, 19954-19958.

55

Gu, J.; Zhang, Z. P.; Peng, A. M.; Yang, J. Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots. Nanotechnology 2016, 27, 165704.

56

Ben Aoun, S. Nanostructured carbon electrode modified with N-doped graphene quantum dots-chitosan nanocomposite: A sensitive electrochemical dopamine sensor. R. Soc. Open Sci. 2017, 4, 171199.

57

Kwon, W.; Kim, Y. -H.; Lee, C. -L.; Lee, M.; Choi, H. C.; Lee, T. -W.; Rhee, S. -W. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Lett. 2014, 14, 1306-1311.

58

Guo, X. C.; Zhang, H. Y.; Sun, H. Q.; Tade, M. O.; Wang, S. B. Green synthesis of carbon quantum dots for sensitized solar cells. ChemPhotoChem 2017, 1, 116-119.

59

Vougioukalakis, G. C.; Philippopoulos, A. I.; Stergiopoulos, T.; Falaras, P. Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coord. Chem. Rev. 2011, 255, 2602-2621.

60

Lu, K. Y.; Wang, Y. J.; Liu, Z. K.; Han, L.; Shi, G. Z.; Fang, H. H.; Chen, J.; Ye, X. C.; Chen, S.; Yang, F. et al. High-efficiency PbS quantum-dot solar cells with greatly simplified fabrication processing via "Solvent-Curing". Adv. Mater. 2018, 30, 1707572.

61

Huang, F.; Zhang, L. S.; Zhang, Q. F.; Hou, J.; Wang, H. G.; Wang, H. L.; Peng, S. L.; Liu, J. S.; Cao, G. Z. High efficiency CdS/CdSe quantum dot sensitized solar cells with two ZnSe layers. ACS Appl. Mater. Interfaces 2016, 8, 34482-34489.

62

Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11-18.

63

Bottrill, M.; Green, M. Some aspects of quantum dot toxicity. Chem. Commun. 2011, 47, 7039-7050.

64

Ba, L. X.; Liu, H.; Shen, W. Z. Perovskite/c-Si tandem solar cells with realistic inverted architecture: Achieving high efficiency by optical optimization. Prog. Photovolt. : Res. Appl. 2018, 26, 924-933.

65

Shahrjerdi, D.; Bedell, S. W.; Bayram, C.; Lubguban, C. C.; Fogel, K.; Lauro, P.; Ott, J. A.; Hopstaken, M.; Gayness, M.; Sadana, D. Ultralight high-efficiency flexible InGaP/(In)GaAs tandem solar cells on plastic. Adv. Energy Mater. 2013, 3, 566-571.

File
12274_2019_2337_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2018
Revised: 11 February 2019
Accepted: 13 February 2019
Published: 11 March 2019
Issue date: May 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors would like to thank TCU for providing funding from the TCU RCAF (Research and Creative Activities Fund), and TCU Invests in Scholarship grant funding. Also, a grant from the Robert A. Welch Foundation (Grant P-1212 to JLC) is gratefully acknowledged.

Return