Journal Home > Volume 12 , Issue 7

Fullerene derivatives as a kind of star carbon materials have received intense investigation because of their three-dimensional shape, anisotropic electron mobility, and high electron affinity. Indeed, the cutting-edge developments of fullerene nanomaterials have had a tremendous impact on a wide range of applications, such as organic solar cells, field effect transistors, and photodetectors. To explore their full potential applications, research into fullerene-based multilevel nanostructures relying on hierarchical interactions from bottom to top is rapidly expanding. It is of great theoretical and practical significance to prepare multilevel fullerene nanostructures with structural and properties controlled by optimizing the influencing factors. This review would offer several aspects including the chemical structures of organic molecules and the nanostructures of the organic molecules and fullerene-organic complexes. Whether monolayers or multilayers, fullerene molecules tend to fall into a space of suitable size, in which the located positions are affected by the intermolecular interactions. For the covered surfaces, fullerenes are more likely to approach the electron-withdrawing units through the donor–acceptor and charge transfer interaction. Through the implementation of this review, an exhaustive analysis on the chemical modification, including the molecular backbone and substituents, preformed network synergies, and adsorption sites is presented. In addition, the relationship between the molecules and structures that illustrates the importance of the molecular design for the controlled fullerenes hybrid nanostructures can be further understood based on the results of the joined experimental and computational investigations.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2019
Revised: 16 January 2019
Accepted: 10 February 2019
Published: 02 March 2019
Issue date: July 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21472029 and 21773041), and the National Basic Research Program of China (No. 2016YFA0200700).

Return