Journal Home > Volume 12 , Issue 7

Fullerene derivatives as a kind of star carbon materials have received intense investigation because of their three-dimensional shape, anisotropic electron mobility, and high electron affinity. Indeed, the cutting-edge developments of fullerene nanomaterials have had a tremendous impact on a wide range of applications, such as organic solar cells, field effect transistors, and photodetectors. To explore their full potential applications, research into fullerene-based multilevel nanostructures relying on hierarchical interactions from bottom to top is rapidly expanding. It is of great theoretical and practical significance to prepare multilevel fullerene nanostructures with structural and properties controlled by optimizing the influencing factors. This review would offer several aspects including the chemical structures of organic molecules and the nanostructures of the organic molecules and fullerene-organic complexes. Whether monolayers or multilayers, fullerene molecules tend to fall into a space of suitable size, in which the located positions are affected by the intermolecular interactions. For the covered surfaces, fullerenes are more likely to approach the electron-withdrawing units through the donor–acceptor and charge transfer interaction. Through the implementation of this review, an exhaustive analysis on the chemical modification, including the molecular backbone and substituents, preformed network synergies, and adsorption sites is presented. In addition, the relationship between the molecules and structures that illustrates the importance of the molecular design for the controlled fullerenes hybrid nanostructures can be further understood based on the results of the joined experimental and computational investigations.


menu
Abstract
Full text
Outline
About this article

Dependence of the surface-assisted fullerene-based complex structure on the template molecule design

Show Author's information Yanfang GengQingdao Zeng( )Chen Wang( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology,CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology,Beijing,100190,China;

Abstract

Fullerene derivatives as a kind of star carbon materials have received intense investigation because of their three-dimensional shape, anisotropic electron mobility, and high electron affinity. Indeed, the cutting-edge developments of fullerene nanomaterials have had a tremendous impact on a wide range of applications, such as organic solar cells, field effect transistors, and photodetectors. To explore their full potential applications, research into fullerene-based multilevel nanostructures relying on hierarchical interactions from bottom to top is rapidly expanding. It is of great theoretical and practical significance to prepare multilevel fullerene nanostructures with structural and properties controlled by optimizing the influencing factors. This review would offer several aspects including the chemical structures of organic molecules and the nanostructures of the organic molecules and fullerene-organic complexes. Whether monolayers or multilayers, fullerene molecules tend to fall into a space of suitable size, in which the located positions are affected by the intermolecular interactions. For the covered surfaces, fullerenes are more likely to approach the electron-withdrawing units through the donor–acceptor and charge transfer interaction. Through the implementation of this review, an exhaustive analysis on the chemical modification, including the molecular backbone and substituents, preformed network synergies, and adsorption sites is presented. In addition, the relationship between the molecules and structures that illustrates the importance of the molecular design for the controlled fullerenes hybrid nanostructures can be further understood based on the results of the joined experimental and computational investigations.

Keywords: nanostructure, property, fullerene, organic molecule, molecular design

References(96)

1

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

2

Néel, N.; Kröger, J.; Berndt, R. Highly periodic fullerene nanomesh. Adv. Mater. 2006, 18, 174–177.

3

Shirai, Y.; Osgood, A. J.; Zhao, Y. M.; Kelly, K. F.; Tour, J. M. Directional control in thermally driven single-molecule nanocars. Nano Lett. 2005, 5, 2330–2334.

4

Shirai, Y.; Osgood, A. J.; Zhao, Y. M.; Yao, Y. X.; Saudan, L.; Yang, H. B.; Hung, C. Y.; Alemany, L. B.; Sasaki, T.; Morin, J. F. et al. Surface-rolling molecules. J. Am. Chem. Soc. 2006, 128, 4854–4864.

5

Yoshimoto, S.; Masuda, S.; Fukuda, T.; Kobayashi, N. Molecular assembly of fullerene-conjugated phthalocyanine derivative on Au(111) at single molecular level. J. Inorg. Biochem. 2012, 108, 178–181.

6

Diederich, F.; Gómez-López, M. Supramolecular fullerene chemistry. Chem. Soc. Rev. 1999, 28, 263–277.

7

Mali, K. S.; Pearce, N.; De Feyter, S.; Champness, N. R. Frontiers of supramolecular chemistry at solid surfaces. Chem. Soc. Rev. 2017, 46, 2520–2542.

8

Wang, P.; Metzger, R. M.; Chen, B. Stable monolayers of fullerene derivatives. Thin Solid Films 1998, 327329, 96–99.

9

Kuzume, A.; Herrero, E.; Feliu, J. M.; Nichols, R. J.; Schiffrin, D. J. Fullerene monolayers adsorbed on high index gold single crystal surfaces. Phys. Chem. Chem. Phys. 2004, 6, 619–625.

10

Leigh, D. F.; Nörenberg, C.; Cattaneo, D.; Owen, J. H. G.; Porfyrakis, K.; Bassi, A. L.; Ardavan, A.; Briggs, G. A. D. Self-assembly of trimetallic nitride template fullerenes on surfaces studied by STM. Surf. Sci. 2007, 601, 2750–2755.

11

Uemura, S.; Sakata, M.; Hirayama, C.; Kunitake, M. Fullerene adlayers on various single-crystal metal surfaces prepared by transfer from L films. Langmuir 2004, 20, 9198–9201.

12

Hands, I. D.; Dunn, J. L.; Bates, C. A. Visualization of static Jahn-Teller effects in the fullerene anion C60-. Phys. Rev. B 2010, 82, 155425.

13

Hung, K. T.; Huang, K. T.; Hsiao, C. Y.; Shih, C. F. Improving efficiency of pentacene/C60 based solar cells with mixed interlayers. Thin Solid Films 2011, 519, 5270–5273.

14

Zhang, X. M; Zeng, Q. D.; Wang, C. Molecular templates and nano-reactors: Two-dimensional hydrogen bonded supramolecular networks on solid/liquid interfaces. RSC Adv. 2013, 3, 11351–11366.

15

Liang, H. L.; He, Y.; Ye, Y. C.; Xu, X. G.; Cheng, F.; Sun, W.; Shao, X.; Wang, Y. F.; Li, J. L.; Wu, K. Two-dimensional molecular porous networks constructed by surface assembling. Coord. Chem. Rev. 2009, 253, 2959–2979.

16

Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

17

Otero, R.; Naitoh, Y.; Rosei, F.; Jiang, P.; Thostrup, P.; Gourdon, A.; Laegsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. One-dimensional assembly and selective orientation of lander molecules on an O-Cu template. Angew. Chem., Int. Ed. 2004, 43, 2092–2095.

18

Blunt, M. O.; Russell, J. C.; del Carmen Gimenez-Lopez, M.; Taleb, N.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Guest-induced growth of a surface-based supramolecular bilayer. Nat. Chem. 2011, 3, 74–78.

19

De Feyter, S.; De Schryver, F. C. Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem. Soc. Rev. 2003, 32, 139–150.

20

Yoshimoto, S.; Tsutsumi, E.; Honda, Y.; Murata, Y.; Murata, M.; Komatsu, K.; Ito, O.; Itaya, K. Controlled molecular orientation in an adlayer of a supramolecular assembly consisting of an open-cage C60 derivative and Zn octaethylporphyrin on Au(111). Angew. Chem. 2004, 116, 3106–3109.

21

Červenka, J.; Flipse, C. F. J. Fullerene monolayer formation by spray coating. Nanotechnology 2010, 21, 065302.

22

del carmen Gimenez-Lopez, M.; Räisänen, M. T.; Chamberlain, T. W.; Weber, U.; Lebedeva, M.; Rance, G. A.; Briggs, G. A. D.; Pettifor, D.; Burlakov, V.; Buck, M. et al. Functionalized fullerenes in self-assembled monolayers. Langmuir 2011, 27, 10977–10985.

23

Xu, W.; Feng, L.; Wu, Y. S.; Wang, T. S.; Wu, J. Y.; Xiang, J. F.; Li, B.; Jiang, L.; Shu, C. Y.; Wang, C. R. Construction and photophysics study of supramolecular complexes composed of three-point binding fullerene-trispyridylporphyrin dyads and zinc porphyrin. Phys. Chem. Chem. Phys. 2011, 13, 428–433.

24

Sun, D. Y.; Tham, F. S.; Reed, C. A.; Chaker, L.; Boyd, P. D. W. Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated "jaws porphyrin" hosts. J. Am. Chem. Soc. 2002, 124, 6604–6612.

25

Murata, Y.; Murata, M.; Komatsu, K. 100% encapsulation of a hydrogen molecule into an open-cage fullerene derivative and gas-phase generation of H2@C60. J. Am. Chem. Soc. 2003, 125, 7152–7153.

26

Sánchez, L.; Otero, R.; Gallego, J. M.; Miranda, R.; Martín, N. Ordering fullerenes at the nanometer scale on solid surfaces. Chem. Rev. 2009, 109, 2081–2091.

27

Babu, S. S.; Möhwald, H.; Nakanishi, T. Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem. Soc. Rev. 2010, 39, 4021–4035.

28

Zieleniewska, A.; Lodermeyer, F.; Roth, A.; Guldi, D. M. Fullerenes— How 25 years of charge transfer chemistry have shaped our understanding of (interfacial) interactions. Chem. Soc. Rev. 2018, 47, 702–714.

29

Yoshimoto, S.; Tsutsumi, E.; Fujii, O.; Narita, R.; Itaya, K. Effect of underlying coronene and perylene adlayers for[60]fullerene molecular assembly. Chem. Commun. 2005, 1188–1190.

30

Xiao, W. D.; Passerone, D.; Ruffieux, P.; Aït-Mansour, K.; Gröning, O.; Tosatti, E.; Siegel, J. S.; Fasel, R. C60/corannulene on Cu(110): A surface-supported bistable buckybowl–buckyball host–guest system. J. Am. Chem. Soc. 2008, 130, 4767–4771.

31

Sygula, A.; Fronczek, F. R.; Sygula, R.; Rabideau, P. W.; Olmstead, M. M. A double concave hydrocarbon buckycatcher. J. Am. Chem. Soc. 2007, 129, 3842–3843.

32

Zhang, H. L.; Chen, W.; Huang, H.; Chen, L.; Wee, A. T. S. Preferential trapping of C60 in nanomesh voids. J. Am. Chem. Soc. 2008, 130, 2720–2721.

33

Zhang, J. L.; Zhang, K. H. L.; Zhong, J. Q.; Niu, T. C.; Chen, W. Low-temperature scanning tunneling microscopy/ultraviolet photoelectron spectroscopy investigation of two-dimensional crystallization of C60: Pentacence binary system on Ag(111). J. Appl. Phys. 2012, 111, 034304.

34

Zhang, X.; Lu, Z. H.; Ye, L.; Zhan, C. L.; Hou, J. H.; Zhang, S. Q.; Jiang, B.; Zhao, Y.; Huang, J. H.; Zhang, S. L. et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv. Mater. 2013, 25, 5791–5797.

35

Lin, Y. Z.; Wang, Y. F.; Wang, J. Y.; Hou, J. H.; Li, Y. F.; Zhu, D. B.; Zhan, X. W. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells. Adv. Mater. 2014, 26, 5137–5142.

36

Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029–1031.

37

Räisänen, M. T.; Slater, A. G.; Champness, N. R.; Buck, M. Effects of pore modification on the templating of guest molecules in a 2D honeycomb network. Chem. Sci. 2012, 3, 84–92.

38

Karamzadeh, B.; Eaton, T.; Torres, D. M.; Cebula, I.; Mayor, M.; Buck, M. Sequential nested assembly at the liquid/solid interface. Faraday Discuss. 2017, 204, 173–190.

39

Perdigão, L. M. A.; Saywell, A.; Fontes, G. N.; Staniec, P. A.; Goretzki, G.; Phillips, A. G.; Champness, N. R.; Beton, P. H. Functionalized supramolecular nanoporous arrays for surface templating. Chem. —Eur. J. 2008, 14, 7600–7607.

40

Phillips, A. G.; Perdigão, L. M. A.; Beton, P. H.; Champness, N. R. Tailoring pores for guest entrapment in a unimolecular surface self-assembled hydrogen bonded network. Chem. Commun. 2010, 46, 2775–2777.

41

Chen, W.; Zhang, H. L.; Huang, H.; Chen, L.; Wee, A. T. S. Self-assembled organic donor/acceptor nanojunction arrays. Appl. Phys. Lett. 2008, 92, 193301.

42

Chen, W.; Zhang, H. L.; Huang, H.; Chen, L.; Wee, A. T. S. Orientationally ordered C60 on p-sexiphenyl nanostripes on Ag(111). ACS Nano 2008, 2, 693–698.

43

Zhong, J. Q.; Huang, H.; Mao, H. Y.; Wang, R.; Zhong, S.; Chen, W. Molecular-scale investigation of C60/p-sexiphenyl organic heterojunction interface. J. Chem. Phys. 2011, 134, 154706

44

Schull, G.; Berndt, R. Orientationally ordered (7×7) superstructure of C60 on Au(111). Phys. Rev. Lett. 2007, 99, 226105

45

Zhang, H. L.; Chen, W.; Chen, L.; Huang, H.; Wang, X. S.; Yuhara, J.; Wee, A. T. S. C60 molecular chains on α-sexithiophene nanostripes. Small 2007, 3, 2015–2018.

46

Chen, L.; Chen, W.; Huang, H.; Zhang, H. L.; Yuhara, J.; Wee, A. T. S. Tunable arrays of C60 molecular chains. Adv. Mater. 2008, 20, 484–488.

47

Wen, J.; Ma, J. Oligothiophene template effects on packings and orientations of C60 molecules on Ag(111) surface. Langmuir 2010, 26, 5595–5602.

48

Wang, R.; Mao, H. Y.; Huang, H.; Qi, D. C.; Chen, W. Scanning tunneling microscopy and photoelectron spectroscopy investigation of the sexithiophene: C60 donor–acceptor nanostructure formation on graphite. J. Appl. Phys. 2011, 109, 084307.

49

Huang, H.; Chen, W.; Chen, L.; Zhang, H. L.; Wang, X. S.; Bao, S. N.; Wee, A. T. S. "Zigzag" C60 chain arrays. Appl. Phys. Lett. 2008, 92, 023105.

50

Lackinger, M.; Heckl, W. M. Carboxylic acids: Versatile building blocks and mediators for two-dimensional supramolecular self-assembly. Langmuir 2009, 25, 11307–11321.

51

Griessl, S. J. H.; Lackinger, M.; Jamitzky, F.; Markert, T.; Hietschold, M.; Heckl, W. M. Room-temperature scanning tunneling microscopy manipulation of single C60 molecules at the liquid-solid interface: Playing nanosoccer. J. Phys. Chem. B 2004, 108, 11556–11560.

52

Shen, Y. T.; Deng, K.; Zeng, Q. D.; Wang, C. Size-selective effects on fullerene adsorption by nanoporous molecular networks. Small 2010, 6, 76–80.

53

Xu, B.; Tao, C. G.; Williams, E. D.; Reutt-Robey, J. E. Coverage dependent supramolecular structures: C60: ACA monolayers on Ag(111). J. Am. Chem. Soc. 2006, 128, 8493–8499.

54

Xu, B.; Zhu, E. K.; Lu, C.; Liu, Y. D.; Liu, Z. Y.; Yu, D. L.; He, J. L.; Tian, Y. J. Distinct C60 growth modes on anthracene carboxylic acid templates. Appl. Phys. Lett. 2010, 96, 143115.

55

MacLeod, J. M.; Ivasenko, O.; Fu, C. Y.; Taerum, T.; Rosei, F.; Perepichka, D. F. Supramolecular ordering in oligothiophene-fullerene monolayers. J. Am. Chem. Soc. 2009, 131, 16844–16850.

56

Li, M.; Deng, K.; Lei, S. B.; Yang, Y. L.; Wang, T. S.; Shen, Y. T.; Wang, C. R.; Zeng, Q. D.; Wang, C. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface. Angew. Chem., Int. Ed. 2008, 47, 6717–6721.

57

Shen, Y. T.; Deng, K.; Zhang, X. M.; Lei, D.; Xia, Y.; Zeng, Q. D.; Wang, C. Selective and competitive adsorptions of guest molecules in phase-separated networks. J. Phys. Chem. C 2011, 115, 19696–19701.

58

Krömer, J.; Rios-Carreras, I.; Fuhrmann, G.; Musch, C.; Wunderlin, M.; Debaerdemaeker, T.; Mena-Osteritz, E.; Bäuerle, P. Synthesis of the first fully α-conjugated macrocyclic oligothiophenes: Cyclo[n]thiophenes with tunable cavities in the nanometer regime. Angew. Chem., Int. Ed. 2000, 39, 3481–3486.

DOI
59

Mena-Osteritz, E.; Bäuerle, P. Complexation of C60 on a cyclothiophene monolayer template. Adv. Mater. 2006, 18, 447–451.

60

Shimizu, H.; González, J. D. C.; Hasegawa, M.; Nishinaga, T.; Haque, T.; Takase, M.; Otani, H.; Rabe, J. P.; Iyoda, M. Synthesis, structures, and photophysical properties of π-expanded oligothiophene 8-mers and their saturn-like C60 complexes. J. Am. Chem. Soc. 2015, 137, 3877–3885.

61

González, J. D. C.; Iyoda, M.; Rabe, J. P. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes. Nat. Commun. 2017, 8, 14717.

62

Pan, G. B.; Cheng, X. H.; Höger, S.; Freyland, W. 2D supramolecular structures of a shape-persistent macrocycle and co-deposition with fullerene on HOPG. J. Am. Chem. Soc. 2006, 128, 4218–4219.

63

Cui, K.; Schlutter, F.; Ivasenko, O.; Kivala, M.; Schwab, M. G.; Lee, S. L.; Mertens, S. F. L.; Tahara, K.; Tobe, Y.; Mullen, K. et al. Multicomponent self-assembly with a shape-persistent N-heterotriangulene macrocycle on Au(111). Chem. —Eur. J. 2015, 21, 1652–1659.

64

Wang, Y. B.; Lin, Z. Y. Supramolecular interactions between fullerenes and porphyrins. J. Am. Chem. Soc. 2003, 125, 6072–6073.

65

Boyd, P. D. W.; Reed, C. A. Fullerene-porphyrin constructs. Acc. Chem. Res. 2005, 38, 235–242.

66

Wang, C. L.; Zhang, W. B.; Van Horn, R. M.; Tu, Y. F.; Gong, X.; Cheng, S. Z. D.; Sun, Y. M.; Tong, M. H.; Seo, J.; Hsu, B. B. Y. et al. A porphyrin-fullerene dyad with a supramolecular "double-cable" structure as a novel electron acceptor for bulk heterojunction polymer solar cells. Adv. Mater. 2011, 23, 2951–2956.

67

Sedona, F.; Di Marino, M.; Basagni, A.; Colazzo, L.; Sambi, M. Structurally tunable self-assembled 2D cocrystals of C60 and porphyrins on the Ag (110) surface. J. Phys. Chem. C 2014, 118, 1587–1593.

68

Di Marino, M.; Sedona, F.; Sambi, M.; Carofiglio, T.; Lubian, E.; Casarin, M.; Tondello, E. STM investigation of temperature-dependent two-dimensional supramolecular architectures of C60 and amino-tetraphenylporphyrin on Ag(110). Langmuir 2010, 26, 2466–2472.

69

Sedona, F.; Di Marino, M.; Sambi, M.; Carofiglio, T.; Lubian, E.; Casarin, M.; Tondello, E. Fullerene/porphyrin multicomponent nanostructures on Ag(110): From supramolecular self-assembly to extended copolymers. ACS Nano 2010, 4, 5147–5154.

70

Bonifazi, D.; Kiebele, A.; Stöhr, M.; Cheng, F.; Jung, T.; Diederich, F.; Spillmann, H. Supramolecular nanostructuring of silver surfaces via self-assembly of[60]fullerene and porphyrin modules. Adv. Funct. Mater. 2007, 17, 1051–1062.

71

Spillmann, H.; Kiebele, A.; Stöhr, M.; Jung, T. A.; Bonifazi, D.; Cheng, F.; Diederich, F. A two-dimensional porphyrin-based porous network featuring communicating cavities for the templated complexation of fullerenes. Adv. Mater. 2006, 18, 275–279.

72

Wei, Y. Y.; Robey, S. W.; Reutt-Robey, J. E. TiOPc molecular dislocation networks as nanotemplates for C60 cluster arrays. J. Am. Chem. Soc. 2009, 131, 12026–12027.

73

Yoshimoto, S.; Honda, Y.; Ito, O.; Itaya, K. Supramolecular pattern of fullerene on 2D bimolecular "chessboard" consisting of bottom-up assembly of porphyrin and phthalocyanine molecules. J. Am. Chem. Soc. 2008, 130, 1085–1092.

74

Yoshimoto, S.; Tsutsumi, H.; Honda, Y.; Ito, O.; Itaya, K. Supramolecular assembly of[60] fullerene and highly ordered zinc octaethylporphyrin adlayer formed on Au(111) surface. Chem. Lett. 2004, 33, 914–915.

75

Bassiouk, M.; Álvarez-Zauco, E.; Basiuk, V. A. Adsorption of meso-tetraphenylporphines on thin films of C60 fullerene. Appl. Surf. Sci. 2013, 275, 374–383.

76

Bonifazi, D.; Spillmann, H.; Kiebele, A.; de Wild, M.; Seiler, P.; Cheng, F. Y.; Güntherodt, H. J.; Jung, T.; Diederich, F. Supramolecular patterned surfaces driven by cooperative assembly of C60 and porphyrins on metal substrates. Angew. Chem., Int. Ed. 2004, 43, 4759–4763.

77

Kiebele, A.; Bonifazi, D.; Cheng, F. Y.; Stöhr, M.; Diederich, F.; Jung, T.; Spillmann, H. Adsorption and dynamics of long-range interacting fullerenes in a flexible, two-dimensional, nanoporous porphyrin network. ChemPhysChem 2006, 7, 1462–1470.

78

Jiang, J. Z.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational spectroscopy of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Coord. Chem. Rev. 2006, 250, 424–448.

79

Vijayaraghavan, S.; Écija, D.; Auwärter, W.; Joshi, S.; Seufert, K.; Seitsonen, A. P.; Tashiro, K.; Barth, J. V. Selective supramolecular fullerene-porphyrin interactions and switching in surface-confined C60-Ce(TPP)2 dyads. Nano Lett. 2012, 12, 4077–4083.

80

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

81

Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc. 2013, 135, 10470–10474.

82

Xu, L. R.; Zhou, X.; Yu, Y. X.; Tian, W. Q.; Ma, J.; Lei, S. B. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling. ACS Nano 2013, 7, 8066–8073.

83

Cui, D.; MacLeod, J. M.; Ebrahimi, M.; Perepichka, D. F.; Rosei, F. Solution and air stable host/guest architectures from a single layer covalent organic framework. Chem. Commun. 2015, 51, 16510–16513.

84

Plas, J.; Ivasenko, O.; Martsinovich, N.; Lackinger, M.; De Feyter, S. Nanopatterning of a covalent organic framework host–guest system. Chem. Commun. 2016, 52, 68–71.

85

Cui, D.; MacLeod, J. M.; Ebrahimi, M.; Rosei, F. Selective binding in different adsorption sites of a 2D covalent organic framework. CrystEngComm 2017, 19, 4927–4932.

86

de Wild, M.; Berner, S.; Suzuki, H.; Yanagi, H.; Schlettwein, D.; Ivan, S.; Baratoff, A.; Guentherodt, H. J.; Jung, T. A. A novel route to molecular self-assembly: Self-intermixed monolayer phases. ChemPhysChem 2002, 3, 881–885.

DOI
87

Piot, L.; Silly, F.; Tortech, L.; Nicolas, Y.; Blanchard, P.; Roncali, J.; Fichou, D. Long-range alignments of single fullerenes by site-selective inclusion into a double-cavity 2D open network. J. Am. Chem. Soc. 2009, 131, 12864–12865.

88

Zhao, X. Y.; Watkins, D. L.; Galindo, J. F.; Shewmon, N. T.; Roitberg, A. E.; Xue, J. G.; Castellano, R. K.; Perry, S. S. Hydrogen bond directed assembly of oligothiophene/fullerene superstructures on Au(111). Org. Electron. 2015, 19, 61–69.

89

Baris, B.; Luzet, V.; Duverger, E.; Sonnet, P.; Palmino, F.; Cherioux, F. Robust and open tailored supramolecular networks controlled by the template effect of a silicon surface. Angew. Chem., Int. Ed. 2011, 50, 4094–4098.

90

Rochford, L. A.; Jones, T. S.; Nielsen, C. B. Epitaxial templating of C60 with a molecular monolayer. J. Phys. Chem. Lett. 2016, 7, 3487–3490.

91

Wei, Y. Y.; Reutt-Robey, J. E. Directed organization of C70 kagome lattice by titanyl phthalocyanine monolayer template. J. Am. Chem. Soc. 2011, 133, 15232–15235.

92

Xu, J.; Liu, W. X.; Geng, Y. F.; Deng, K.; Zhan, C. L.; Zeng, Q. D. An STM/STS study of site-selective adsorption of C70 molecules onto arc-shaped BODIPY molecular-networks. Nanoscale 2017, 9, 2579–2584.

93

Geng, Y. F.; Li, P.; Xue, J. D.; Luo, D. P.; Zhang, J. Y.; Shu, L. J.; Deng, K.; Xie, J. L.; Zeng, Q. D. Specific distribution of orientated C70-fullerene triggered by solvent-tuned macrocycle adlayer. Nano Res. 2017, 10, 991–1000.

94

Zhang, S. Q.; Liu, Z. Y.; Fu, W. F.; Liu, F.; Wang, C. M.; Sheng, C. Q.; Wang, Y. F.; Deng, K.; Zeng, Q. D.; Shu, L. J. et al. Donor–acceptor conjugated macrocycles: Synthesis and host–guest coassembly with fullerene toward photovoltaic application. ACS Nano 2017, 11, 11701–11713.

95

Cui, D. L.; Ebrahimi, M.; Rosei, F.; Macleod, J. M. Control of fullerene crystallization from 2D to 3D through combined solvent and template effects. J. Am. Chem. Soc. 2017, 139, 16732–16740.

96

Mezour, M. A.; Choueiri, R. M.; Lukoyanova, O.; Lennox, R. B.; Perepichka, D. F. Hydrogen bonding vs. molecule-surface interactions in 2D self-assembly of[C60]fullerenecarboxylic acids. Nanoscale 2016, 8, 16955–16962.

Publication history
Copyright
Acknowledgements

Publication history

Received: 19 November 2019
Revised: 16 January 2019
Accepted: 10 February 2019
Published: 02 March 2019
Issue date: July 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 21472029 and 21773041), and the National Basic Research Program of China (No. 2016YFA0200700).

Return