Journal Home > Volume 12 , Issue 5

Polymeric micelles have demonstrated wide utility for chemodrug delivery, which however, still suffer from shortcomings such as undesired drug loading, disassembly upon dilution, pre-leakage of drug cargoes during systemic circulation, and lack of cancer-selective drug release. Herein, a poly(ethylene glycol) (PEG)-polyphosphoester-based, reactive oxygen species (ROS)-responsive, core-cross-linked (CCL) micellar system was developed to encapsulate both chemodrug (doxorubicin, Dox) and photosensitizer (chlorin e6, Ce6). The hydrophobic core of the micelles was cross-linked via a thioketal (TK)-containing linker, which notably enhanced the drug loading and micelle stability. In tumor cells, far-red light irradiation of Ce6 generated ROS to cleave the TK linkers and disrupt the micelle cores. As such, micelles were destabilized and Dox release was promoted, which thereafter imparted synergistic anti-cancer effect with ROS-mediated photodynamic therapy. This study provides an effective approach to realize the precise control over drug loading, formulation stability, and cancer-selective drug release using polymeric micelles, and would render promising utilities for the programmed anti-cancer combination therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment

Show Author's information Yongjuan Li1Jian Hu2Xun Liu1Yong Liu3( )Shixian Lv1Juanjuan Dang1Yong Ji4( )Jinlin He2Lichen Yin1( )
Institute of Functional Nano and Soft Materials (FUNSOM),Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University,Suzhou,215123,China;
College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,Soochow University,Suzhou,215123,China;
Department of Biomedical Engineering,University of Groningen and University Medical Center Groningen,Antonius Deusinglaan, 1, 9713 AV Groningen,The Netherlands;
Department of Cardiothoracic Surgery,Wuxi People's Hospital Affiliated to Nanjing Medical University,Wuxi,214023,China;

Abstract

Polymeric micelles have demonstrated wide utility for chemodrug delivery, which however, still suffer from shortcomings such as undesired drug loading, disassembly upon dilution, pre-leakage of drug cargoes during systemic circulation, and lack of cancer-selective drug release. Herein, a poly(ethylene glycol) (PEG)-polyphosphoester-based, reactive oxygen species (ROS)-responsive, core-cross-linked (CCL) micellar system was developed to encapsulate both chemodrug (doxorubicin, Dox) and photosensitizer (chlorin e6, Ce6). The hydrophobic core of the micelles was cross-linked via a thioketal (TK)-containing linker, which notably enhanced the drug loading and micelle stability. In tumor cells, far-red light irradiation of Ce6 generated ROS to cleave the TK linkers and disrupt the micelle cores. As such, micelles were destabilized and Dox release was promoted, which thereafter imparted synergistic anti-cancer effect with ROS-mediated photodynamic therapy. This study provides an effective approach to realize the precise control over drug loading, formulation stability, and cancer-selective drug release using polymeric micelles, and would render promising utilities for the programmed anti-cancer combination therapy.

Keywords: photodynamic therapy, core-cross-linked micelles, on-demand drug release, reactive oxygen species (ROS) responsiveness, synergistic anti-cancer therapy

References(51)

1

Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015, 200, 138-157.

2

Kwon, G. S.; Okano, T. Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev. 1996, 21, 107-116.

3

Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2012, 64, 37-48.

4

Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Dis. 2003, 2, 347-360.

5

Aouameur, D.; Cheng, H.; Opoku-Damoah, Y.; Sun, B.; Dong, Q. L.; Han, Y.; Zhou, J. P.; Ding, Y. Stimuli-responsive gel-micelles with flexible modulation of drug release for maximized antitumor efficacy. Nano Res. 2018, 11, 4245-4264.

6

Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101-113.

7

Cao, Z. Y.; Ma, Y. C.; Sun, C. Y.; Lu, Z. D.; Yao, Z. Y.; Wang, J. X.; Li, D. D.; Yuan, Y. Y.; Yang, X. Z. ROS-sensitive polymeric nanocarriers with red light-activated size shrinkage for remotely controlled drug release. Chem. Mater. 2017, 30, 517-525.

8

Ding, D.; Zhu, Z. S.; Li, R. T.; Li, X. L.; Wu, W.; Jiang, X. Q.; Liu, B. R. Nanospheres-incorporated implantable hydrogel as a trans-tissue drug delivery system. ACS Nano 2011, 5, 2520-2534.

9

Phelps, E. A.; Enemchukwu, N. O.; Fiore, V. F.; Sy, J. C.; Murthy, N.; Sulchek, T. A.; Barker, T. H.; García, A. J. Maleimide cross-linked bioactive peg hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 2012, 24, 64-70.

10

Wang, P.; Wang, J. X.; Tan, H. W.; Weng, S. F.; Cheng, L. Y.; Zhou, Z. P.; Wen, S. Acid- and reduction-sensitive micelles for improving the drug delivery efficacy for pancreatic cancer therapy. Biomater. Sci. 2018, 6, 1262-1270.

11

Shuai, X. T.; Merdan, T.; Schaper, A. K.; Xi, F.; Kissel, T. Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjugate Chem. 2004, 15, 441-448.

12

Talelli, M.; Barz, M.; Rijcken, C. J. F.; Kiessling, F.; Hennink, W. E.; Lammers, T. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation. Nano Today 2015, 10, 93-117.

13

Li, Y. P.; Xiao, K.; Luo, J. T.; Xiao, W. W.; Lee, J. S.; Gonik, A. M.; Kato, J.; Dong, T. A.; Lam, K. S. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials 2011, 32, 6633-6645.

14

Gulfam, M.; Matini, T.; Monteiro, P. F.; Riva, R.; Collins, H.; Spriggs, K.; Howdle, S. M.; Jérôme, C.; Alexander, C. Bioreducible cross-linked core polymer micelles enhance in vitro activity of methotrexate in breast cancer cells. Biomater. Sci. 2017, 5, 532-550.

15

Pitarresi, G.; Casadei, M. A.; Mandracchia, D.; Paolicelli, P.; Palumbo, F. S.; Giammona, G. Photocrosslinking of dextran and polyaspartamide derivatives: A combination suitable for colon-specific drug delivery. J. Control. Release 2007, 119, 328-338.

16

Ding, J. X.; Zhuang, X. L.; Xiao, C. S.; Cheng, Y. L.; Zhao, L.; He, C. L.; Tang, Z. H.; Chen, X. S. Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. J. Mater. Chem. 2011, 21, 11383-11391.

17

Yang, S. C.; Tang, Z. H.; Zhang, D. W.; Deng, M. X.; Chen, X. S. pH and redox dual-sensitive polysaccharide nanoparticles for the efficient delivery of doxorubicin. Biomater. Sci. 2017, 5, 2169-2178.

18

Li, J. M.; Liu, Y.; Li, H. L.; Shi, W.; Bi, X. Z.; Qiu, Q. Q.; Zhang, B.; Huang, W. L.; Qian, H. pH-sensitive micelles with mitochondria-targeted and aggregation-induced emission characterization: Synthesis, cytotoxicity and biological applications. Biomater. Sci. 2018, 6, 2998-3008.

19

Li, X.; Li, H.; Yi, W.; Chen, J. Y.; Liang, B. L. Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells. Int. J. Nanomedicine 2013, 8, 3019-3031.

20

Wang, X. R.; Liu, G. H.; Hu, J. M.; Zhang, G. Y.; Liu, S. Y. Concurrent block copolymer polymersome stabilization and bilayer permeabilization by stimuli-regulated "traceless" crosslinking. Angew. Chem. 2014, 126, 3202-3206.

21

Zhang, Z. H.; Yin, L. C.; Tu, C. L.; Song, Z. Y.; Zhang, Y. F.; Xu, Y. X.; Tong, R.; Zhou, Q.; Ren, J.; Cheng, J. J. Redox-responsive, core cross-linked polyester micelles. ACS Macro Lett. 2013, 2, 40-44.

22

Zhang, Y.; Guo, Q.; An, S.; Lu, Y. F.; Li, J. F.; He, X.; Liu, L. S.; Zhang, Y. J.; Sun, T.; Jiang, C. ROS-switchable polymeric nanoplatform with stimuli-responsive release for active targeted drug delivery to breast cancer. ACS Appl. Mater. Interfaces 2017, 9, 12227-12240.

23

Hu, X. L.; Chen, X. S.; Wei, J. Z.; Liu, S.; Jing, X. B. Core crosslinking of biodegradable block copolymer micelles based on poly(ester carbonate). Macromol. Biosci. 2009, 9, 456-463.

24

Li, J.; Sun, C. Y.; Tao, W.; Cao, Z. Y.; Qian, H. S.; Yang, X. Z.; Wang, J. Photoinduced PEG deshielding from ROS-sensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials 2018, 170, 147-155.

25

Ruan, C. H.; Liu, L. S.; Wang, Q. B.; Chen, X. L.; Chen, Q. J.; Lu, Y. F.; Zhang, Y.; He, X.; Zhang, Y. J.; Guo, Q. et al. Reactive oxygen species-biodegradable gene carrier for the targeting therapy of breast cancer. ACS Appl. Mater. Interfaces 2018, 10, 10398-10408.

26

Kramer, J. R.; Deming, T. J. Glycopolypeptides with a redox-triggered helix-to-coil transition. J. Am. Chem. Soc. 2012, 134, 4112-4115.

27

Han, P.; Li, S. C.; Cao, W.; Li, Y.; Sun, Z. W.; Wang, Z. Q.; Xu, H. P. Red light responsive diselenide-containing block copolymer micelles. J. Mater. Chem. B 2013, 1, 740-743.

28

Liu, J. Y.; Pang, Y.; Zhu, Z. Y.; Wang, D. L.; Li, C. T.; Huang, W.; Zhu, X. Y.; Yan, D. Y. Therapeutic nanocarriers with hydrogen peroxide-triggered drug release for cancer treatment. Biomacromolecules 2013, 14, 1627-1636.

29

Wang, L.; Fan, F. Q.; Cao, W.; Xu, H. P. Ultrasensitive ROS-responsive coassemblies of tellurium-containing molecules and phospholipids. ACS Appl. Mater. Interfaces 2015, 7, 16054-16060.

30

Cao, W.; Gu, Y. W.; Li, T. Y.; Xu, H. P. Ultra-sensitive ROS-responsive tellurium-containing polymers. Chem. Commun. 2015, 51, 7069-7071.

31

Wang, J. Q.; Zhang, Y. Q.; Archibong, E.; Ligler, F. S.; Gu, Z. Leveraging H2O2 levels for biomedical applications. Adv. Biosyst. 2017, 1, 1700084.

32

Wang, C.; Wang, J. Q.; Zhang, X. D.; Yu, S. J.; Wen, D.; Hu, Q. Y.; Ye, Y. Q.; Bomba, H.; Hu, X. L.; Liu, Z. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 2018, 10, eaan3682.

33

Song, X. J.; Feng, L. Z.; Liang, C.; Gao, M.; Song, G. S.; Liu, Z. Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. Nano Res. 2017, 10, 1200-1212.

34

Bhaumik, J.; Mittal, A. K.; Banerjee, J.; Chisti, Y.; Banerjee, U. C. Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 2015, 8, 1373-1394.

35

Dang, J. J.; He, H.; Chen, D. L.; Yin, L. C. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater. Sci. 2017, 5, 1500-1511.

36

Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380-387.

37

Sung, S. Y.; Su, Y. L.; Cheng, W.; Hu, P. F.; Chiang, C. S.; Chen, W. T.; Hu, S. H. Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors by targeted biomimetic nanosponges. Nano Lett. 2018, 19, 69-81.

38

Cui, S. S.; Yin, D. Y.; Chen, Y. Q.; Di, Y. F.; Chen, H. Y.; Ma, Y. X.; Achilefu, S.; Gu, Y. Q. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 2013, 7, 676-688.

39

Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580-1585.

40

Qin, W.; Ding, D.; Liu, J. Z.; Yuan, W. Z.; Hu, Y.; Liu, B.; Tang, B. Z. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 2012, 22, 771-779.

41

Du, X. Q.; Sun, Y.; Zhang, M. Z.; He, J. L.; Ni, P. H. Polyphosphoester-camptothecin prodrug with reduction-response prepared via michael addition polymerization and click reaction. ACS Appl. Mater. Interfaces 2017, 9, 13939-13949.

42

Hu, J.; He, J. L.; Zhang, M. Z.; Ni, P. H. Folate-conjugated biodegradable core cross-linked polyphosphoester micelles for targeted and pH-triggered drug delivery. J. Control. Release 2015, 213, e86-e87.

43

Yuan, Y. Y.; Liu, J.; Liu, B. Conjugated-polyelectrolyte-based polyprodrug: Targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source. Angew. Chem. 2014, 126, 7291-7296.

44

Mock, W. L.; Irra, T. A.; Wepsiec, J. P.; Manimaran, T. L. Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis. J. Org. Chem. 1983, 48, 3619-3620.

45

He, Y. Y.; Cheng, G.; Xie, L.; Nie, Y.; He, B.; Gu, Z. W. Polyethyleneimine/ DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery. Biomaterials 2013, 34, 1235-1245.

46

Li, F. F.; Li, Y. J.; Zhou, Z. C.; Lv, S. X.; Deng, Q. R.; Xu, X.; Yin, L. C. Engineering the aromaticity of cationic helical polypeptides toward "self-activated" DNA/siRNA delivery. ACS Appl. Mater. Interfaces 2017, 9, 23586-23601.

47

Lv, S. X.; Wu, Y. C.; Dang, J. Q.; Tang, Z. H.; Song, Z. Y.; Ma, S.; Wang, X.; Chen, X S.; Cheng, J. J.; Yin, L. C. Investigation on the controlled synthesis and post-modification of poly-[(N-2-hydroxyethyl)-aspartamide]-based polymers. Polym. Chem. 2017, 8, 1872-1877.

48

Deepagan, V. G.; Kwon, S.; You, D. G.; Van Quy Nguyen; Um, W.; Ko, H.; Lee, H.; Jo, D. G.; Kang, Y. M.; Park, J. H. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 2016, 103, 56-66.

49

Zhao, Z.; Wang, J.; Mao, H. Q.; Leong, K. W. Polyphosphoesters in drug and gene delivery. Adv. Drug Deliv. Rev. 2003, 55, 483-499.

50

Li, Y. J.; Lv, S. X.; Song, Z. Y.; Dang, J. J.; Li, X. D.; He, H.; Xu, X.; Zhou, Z. C.; Yin, L. C. Photodynamic therapy-mediated remote control of chemotherapy toward synergistic anticancer treatment. Nanoscale 2018, 10, 14554-14562

51

Liu, Y.; Song, N.; Chen, L.; Xie, Z. G. Bodipy@ir(Ⅲ) complexes assembling organic nanoparticles for enhanced photodynamic therapy. Chin. J. Polym. Sci. 2018, 36, 417-424.

File
12274_2019_2330_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 December 2018
Revised: 03 February 2019
Accepted: 04 February 2019
Published: 06 March 2019
Issue date: May 2019

Copyright

© The Author(s) 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51722305, 51573123, and 51873142), the Ministry of Science and Technology of China (No. 2016YFA0201200), the 111 Project, and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return