Journal Home > Volume 12 , Issue 4

The morphology and structural stability of metal/2D semiconductor interfaces strongly affect the performance of 2D electronic devices and synergistic catalysis. However, the structural evolution at the interfaces has not been well explored particularly at atomic resolution. In this work, we study the structural evolution of Au nanoparticles (NPs) on few-layer MoS2 by high resolution transmission electron microscopy (HRTEM) and quantitative high-angle annular dark field scanning TEM. It is found that in the transition of Au from nanoparticles to dendrites, a dynamically epitaxial alignment between Au and MoS2 lattices is formed, and Moiré patterns can be directly observed in HRTEM images due to the mismatch between Au and MoS2 lattices. This epitaxial alignment can occur in ambient conditions, and can also be accelerated by the irradiation of high-energy electron beam. In situ observation clearly reveals the rotation of Au NPs, the atom migration inside Au NPs, and the transfer of Au atoms between neighboring Au NPs, finally leading to the formation of epitaxially aligned Au dendrites on MoS2. The structural evolution of metal/2D semiconductor interfaces at atomic scale can provide valuable information for the design and fabrication of the metal/2D semiconductor nano-devices with desired physical and chemical performances.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct observation of epitaxial alignment of Au on MoS2 at atomic resolution

Show Author's information Yinghui Sun1Haofei Zhao1Dan Zhou2Yuchen Zhu1Huanyu Ye1Yan Aung Moe1Rongming Wang1( )
Beijing Advanced Innovation Center for Materials Genome Engineering,Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing,Beijing,100083,China;
Stuttgart Center for Electron Microscopy,Max Planck Institute for Solid State Research,Stuttgart,70569,Germany;

Abstract

The morphology and structural stability of metal/2D semiconductor interfaces strongly affect the performance of 2D electronic devices and synergistic catalysis. However, the structural evolution at the interfaces has not been well explored particularly at atomic resolution. In this work, we study the structural evolution of Au nanoparticles (NPs) on few-layer MoS2 by high resolution transmission electron microscopy (HRTEM) and quantitative high-angle annular dark field scanning TEM. It is found that in the transition of Au from nanoparticles to dendrites, a dynamically epitaxial alignment between Au and MoS2 lattices is formed, and Moiré patterns can be directly observed in HRTEM images due to the mismatch between Au and MoS2 lattices. This epitaxial alignment can occur in ambient conditions, and can also be accelerated by the irradiation of high-energy electron beam. In situ observation clearly reveals the rotation of Au NPs, the atom migration inside Au NPs, and the transfer of Au atoms between neighboring Au NPs, finally leading to the formation of epitaxially aligned Au dendrites on MoS2. The structural evolution of metal/2D semiconductor interfaces at atomic scale can provide valuable information for the design and fabrication of the metal/2D semiconductor nano-devices with desired physical and chemical performances.

Keywords: MoS2, atom migration, in situ transmission electron microscopy (TEM), metal-semiconductor interface, Moirépatterns

References(60)

1

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

2

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.

3

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.

4

Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castro e Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003-1009.

5

Sun, Y. H.; Wang, R. M.; Liu, K. Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications. Appl. Phys. Rev. 2017, 4, 011301.

6

Asres, G. A.; Baldovi, J. J.; Dombovari, A.; Järvinen, T.; Lorite, G. S.; Mohl, M.; Shchukarev, A.; Pérez Paz, A.; Xian, L. D.; Mikkola, J. P. et al. Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res. 2018, 11, 4215-4224.

7

Wang, J. H.; Xu, X. Z.; Qiao, R. X.; Liang, J.; Liu, C.; Zheng, B. H.; Liu, L.; Gao, P.; Jiao, Q. Z.; Yu, D. P. et al. Visualizing grain boundaries in monolayer MoSe2 using mild H2O vapor etching. Nano Res. 2018, 11, 4082-4089.

8

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

9

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.

10

Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102-1120.

11

Xu, Y.; Cheng, C.; Du, S. C.; Yang, J. Y.; Yu, B.; Luo, J.; Yin, W. Y.; Li, E. P.; Dong, S. R.; Ye, P. D. et al. Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p-n heterojunctions. ACS Nano 2016, 10, 4895-4919.

12

He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994-2999.

13

Shi, Y. M.; Huang, J. K.; Jin, L. M.; Hsu, Y. T.; Yu, S. F.; Li, L. J.; Yang, H. Y. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Sci. Rep. 2013, 3, 1839.

14

Sreeprasad, T. S.; Nguyen, P.; Kim, N.; Berry, V. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: Electrical, thermal, and structural properties. Nano Lett. 2013, 13, 4434-4441.

15

Kang, Y. M.; Najmaei, S.; Liu, Z.; Bao, Y. J.; Wang, Y. M.; Zhu, X.; Halas, N. J.; Nordlander, P.; Ajayan, P. M.; Lou, J. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 2014, 26, 6467-6471.

16

Li, Z.; Xiao, Y.; Gong, Y.; Wang, Z.; Kang, Y.; Zu, S.; Ajayan, P. M.; Nordlander, P.; Fang, Z. Active light control of the MoS2 monolayer exciton binding energy. ACS Nano 2015, 9, 10158-10164.

17

Miao, J. S.; Hu, W. D.; Jing, Y. L.; Luo, W. J.; Liao, L.; Pan, A. L.; Wu, S. W.; Cheng, J. X.; Chen, X. S.; Lu, W. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small 2015, 11, 2392-2398.

18

Gong, L. L.; Zhang, Q.; Wang, L. J.; Wu, J. F.; Han, C.; Lei, B.; Chen, W.; Eda, G.; Goh, K. E. J.; Sow, C. H. Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration. Nano Res. 2018, 11, 4574-4586.

19

Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J. X. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 2013, 4, 1227-1232.

20

Wang, J. H.; Yan, M. Y.; Zhao, K. N.; Liao, X. B.; Wang, P. Y.; Pan, X. L.; Yang, W.; Mai, L. Q. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv. Mater. 2017, 29, 1604464.

21

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

22

Yan, M. Y.; Zhou, X. B.; Pan, X. L.; Wang, J. H.; Xia, L. X.; Yu, K. S.; Liao, X. B.; Xu, X.; He, L.; Mai, L. Q. Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction. Nano Res. 2018, 11, 3205-3212.

23

Zhang, J.; Wu, J. J.; Guo, H.; Chen, W. B.; Yuan, J. T.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 2017, 29, 1701955.

24

Moe, Y. A.; Sun, Y. H.; Ye, H. Y.; Liu, K.; Wang, R. M. Probing evolution of local strain at MoS2-metal boundaries by surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2018, 10, 40246-40254.

25

Jiang, Y.; Wang, Y.; Zhang, Y. Y.; Zhang, Z. F.; Yuan, W. T.; Sun, C. H.; Wei, X.; Brodsky, C. N.; Tsung, C. K.; Li, J. X. et al. Direct observation of Pt nanocrystal coalescence induced by electron-excitation-enhanced van der Waals interactions. Nano Res. 2014, 7, 308-314.

26

Jiang, Y.; Zhang, Z. F.; Yuan, W. T.; Zhang, X.; Wang, Y.; Zhang, Z. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 2018, 11, 42-67.

27

Perera, M. M.; Lin, M. W.; Chuang, H. J.; Chamlagain, B. P.; Wang, C. Y.; Tan, X. B.; Cheng, M. M. C.; Tománek, D.; Zhou, Z. X. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 2013, 7, 4449-4458.

28

Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668-673.

29

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

30

Hussain, M. A.; Yang, M.; Lee, T. J.; Kim, J. W.; Choi, B. G. High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide. J. Colloid Interface Sci. 2015, 451, 216-220.

31

Yuk, J. M.; Jeong, M.; Kim, S. Y.; Seo, H. K.; Kim, J.; Lee, J. Y. In situ atomic imaging of coalescence of au nanoparticles on graphene: Rotation and grain boundary migration. Chem. Commun. 2013, 49, 11479-11481.

32

Zhou, H. Q.; Yu, F.; Guo, C. F.; Wang, Z. P.; Lan, Y. C.; Wang, G.; Fang, Z. Y.; Liu, Y.; Chen, S.; Sun, L. F. et al. Well-oriented epitaxial gold nanotriangles and bowties on MoS2 for surface-enhanced Raman scattering. Nanoscale 2015, 7, 9153-9157.

33

Kiriya, D.; Zhou, Y. Z.; Nelson, C.; Hettick, M.; Madhvapathy, S. R.; Chen, K.; Zhao, P. D.; Tosun, M.; Minor, A. M.; Chrzan, D. C. et al. Oriented growth of gold nanowires on MoS2. Adv. Funct. Mater. 2015, 25, 6257-6264.

34

Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Evolution of gold nanostructures on graphene. Small 2011, 7, 2868-2872.

35

Pashley, D. W.; Stowell, M. J.; Jacobs, M. H.; Law, T. J. The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope. Philos. Mag. 1964, 10, 127-158.

36

Pashley, D. W.; Stowell, M. J. Nucleation and growth of thin films as observed in the electron microscope. J. Vac. Sci. Technol. 1966, 3, 156-166.

37

Takayanagi, K.; Tanishiro, Y.; Yagi, K.; Kobayashi, K.; Honjo, G. UHV-TEM study on the reconstructed surface of Au(111): Metastable p"×p" and stable p×1 surface structure. Surf. Sci. 1988, 205, 637-651.

38

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

39

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.

40

Wen, J. M.; Evans, J. W.; Bartelt, M. C.; Burnett, J. W.; Thiel, P. A. Coarsening mechanisms in a metal film: From cluster diffusion to vacancy ripening. Phys. Rev. Lett. 1996, 76, 652-655.

41

Pai, W. W.; Swan, A. K.; Zhang, Z. Y.; Wendelken, J. F. Island diffusion and coarsening on metal (100) surfaces. Phys. Rev. Lett. 1997, 79, 3210-3213.

42

Stoldt, C. R.; Jenks, C. J.; Thiel, P. A.; Cadilhe, A. M.; Evans, J. W. Smoluchowski ripening of Ag islands on Ag(100). J. Chem. Phys. 1999, 111, 5157-5166.

43

Sun, Y. H.; Liu, K.; Hong, X. P.; Chen, M.; Kim, J.; Shi, S. F.; Wu, J. Q.; Zettl, A.; Wang, F. Probing local strain at MX2-metal boundaries with surface plasmon-enhanced Raman scattering. Nano Lett. 2014, 14, 5329-5334.

44

Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Ye, H. Q.; Poppa, H.; Kilaas, R.; Kisielowski, C. Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys. Rev. Lett. 2008, 100, 017205.

45

Wang, R. M.; Dmitrieva, O.; Farle, M.; Dumpich, G.; Acet, M.; Mejia-Rosales, S.; Perez-Tijerina, E.; Yacaman, M. J.; Kisielowski, C. FePt icosahedra with magnetic cores and catalytic shells. J. Phys. Chem. C 2009, 113, 4395-4400.

46

Liu, W.; Wang, N.; Wang, R. M.; Kumar, S.; Duesberg, G. S.; Zhang, H. Z.; Sun, K. Atom-resolved evidence of anisotropic growth in ZnS nanotetrapods. Nano Lett. 2011, 11, 2983-2988.

47

Liu, J. L.; Liu, W.; Sun, Q.; Wang, S. G.; Sun, K.; Schwank, J.; Wang, R. M. In situ tracing of atom migration in Pt/NiPt hollow spheres during catalysis of Co oxidation. Chem. Commun. 2014, 50, 1804-1807.

48

Alloyeau, D.; Prévot, G.; Le Bouar, Y.; Oikawa, T.; Langlois, C.; Loiseau, A.; Ricolleau, C. Ostwald ripening in nanoalloys: When thermodynamics drives a size-dependent particle composition. Phys. Rev. Lett. 2010, 105, 255901.

49

Prévot, G.; Nguyen, N. T.; Alloyeau, D.; Ricolleau, C.; Nelayah, J. Ostwald-driven phase separation in bimetallic nanoparticle assemblies. ACS Nano 2016, 10, 4127-4133.

50

Seel, S. C. Stress and structure evolution during Volmer-Weber growth of thin films. Ph. D. Dissertation, MIT, Cambridge, 2002.

51

Wang, C. Y.; Du, K.; Song, K. P.; Ye, X. L.; Qi, L.; He, S. Y.; Tang, D. M.; Lu, N.; Jin, H. J.; Li, F. et al. Size-dependent grain-boundary structure with improved conductive and mechanical stabilities in sub-10-nm gold crystals. Phys. Rev. Lett. 2018, 120, 186102.

52

Wang, S. S.; Sawada, H.; Chen, Q.; Han, G. G. D.; Allen, C.; Kirkland, A. I.; Warner, J. H. In situ atomic-scale studies of the formation of epitaxial Pt nanocrystals on monolayer molybdenum disulfide. ACS Nano 2017, 11, 9057-9067.

53

Yuan, W. T.; Zhang, D. W.; Ou, Y.; Fang, K.; Zhu, B. E.; Yang, H. S.; Hansen, T. W.; Wagner, J. B.; Zhang, Z.; Gao, Y. et al. Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2. Angew. Chem. , Int. Ed. 2018, 57, 16827-16831.

54

Jin, Z.; Nackashi, D.; Lu, W.; Kittrell, C.; Tour, J. M. Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem. Mater. 2010, 22, 5695-5699.

55

Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Interaction of metals with suspended graphene observed by transmission electron microscopy. J. Phys. Chem. Lett. 2012, 3, 953-958.

56

Zhang, X.; Meng, J.; Zhu, B. E.; Yuan, W. T.; Yang, H. S.; Zhang, Z.; Gao, Y.; Wang, Y. Unexpected refacetting of palladium nanoparticles under atmospheric N2 conditions. Chem. Commun. 2018, 54, 8587-8590.

57

LeBeau, J. M.; Findlay, S. D.; Allen, L. J.; Stemmer, S. Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 2008, 100, 206101.

58

LeBeau, J. M.; Stemmer, S. Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 2008, 108, 1653-1658.

59

De Wael, A.; De Backer, A.; Jones, L.; Nellist, P. D.; van Aert, S. Hybrid statistics-simulations based method for atom-counting from ADF STEM images. Ultramicroscopy 2017, 177, 69-77.

60

Kirkland, E. J. Advanced computing in electron microscopy; Boston, MA: Springer, 2010.

DOI
File
12274_2019_2329_MOESM1_ESM.pdf (5.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 December 2018
Revised: 25 January 2019
Accepted: 04 February 2019
Published: 08 March 2019
Issue date: April 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors thank Fangtao Li, Hongsheng Fan, and Sibin Duan for helpful discussions. This work was supported by the National Natural Science Foundation of China (Nos. 11604010 and 11674023), 111 Project (No. B170003), and the Fundamental Research Funds for the Central Universities (No. FRF-BD-18-004A).

Return