Journal Home > Volume 12 , Issue 4

Transmission electron microscopes (TEM) are widely used in nanotechnology research. However, it is still challenging to characterize nanoscale objects; their small size coupled with dynamical diffraction makes interpreting real- or reciprocal-space data difficult. Scanning precession electron diffraction ((S)PED) represents an invaluable contribution, reducing the dynamical contributions to the diffraction pattern at high spatial resolution. Here a detailed analysis of wurtzite InP nanowires (30-40 nm in diameter) containing a screw dislocation and an associated wire lattice torsion is presented. It has been possible to characterize the dislocation with great detail (Burgers and line vector, handedness). Through careful measurement of the strain field and comparison with dynamical electron diffraction simulations, this was found to be compatible with a Burgers vector modulus equal to one hexagonal lattice cell parameter despite the observed crystal rotation rate being larger (ca. 20%) than that predicted by classical elastic theory for the nominal wire diameter. These findings corroborate the importance of the (S)PED technique for characterizing nanoscale materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction

Show Author's information Daniel Ugarte1,2( )Luiz H. G. Tizei3Monica A. Cotta1Caterina Ducati2Paul A. Midgley2Alexander S. Eggeman2,4( )
Instituto de Física "Gleb Wataghin",Universidade Estadual de Campinas-UNICAMP,Campinas-SP,CEP 13083-859,Brazil;
Department of Materials Science and Metallurgy,University of Cambridge,Cambridge,CB3 0FS,UK;
Laboratoire de Physique des Solides,CNRS UMR8502, Univ. Paris Sud,Orsay,91405,France;
School of Materials,University of Manchester,Manchester,M13 9PL,UK;

Abstract

Transmission electron microscopes (TEM) are widely used in nanotechnology research. However, it is still challenging to characterize nanoscale objects; their small size coupled with dynamical diffraction makes interpreting real- or reciprocal-space data difficult. Scanning precession electron diffraction ((S)PED) represents an invaluable contribution, reducing the dynamical contributions to the diffraction pattern at high spatial resolution. Here a detailed analysis of wurtzite InP nanowires (30-40 nm in diameter) containing a screw dislocation and an associated wire lattice torsion is presented. It has been possible to characterize the dislocation with great detail (Burgers and line vector, handedness). Through careful measurement of the strain field and comparison with dynamical electron diffraction simulations, this was found to be compatible with a Burgers vector modulus equal to one hexagonal lattice cell parameter despite the observed crystal rotation rate being larger (ca. 20%) than that predicted by classical elastic theory for the nominal wire diameter. These findings corroborate the importance of the (S)PED technique for characterizing nanoscale materials.

Keywords: electron microscopy, nanowire, indium phosphide, scanning precession electron diffraction, Eshelby twist, screw dislocation

References(47)

1

Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486-491.

2

Yang, P. D. The chemistry and physics of semiconductor nanowires. MRS Bull. 2005, 30, 85-91.

3

Agarwal, R. Heterointerfaces in semiconductor nanowires. Small 2008, 4, 1872-1893.

4

Erni, R. Aberration-Corrected Imaging in Transmission Electron Microscopy: An Introduction; Imperial College Press: London, UK, 2015.

DOI
5

Williams, D. B.; Carter, C. B. Transmission Electron Microscopy-A Textbook for Materials Science; Springer: Boston, MA, 2009.

6

Pennycook, S. J.; Nellist, P. D. Scanning Transmission Electron Microscopy; Springer: New York, 2011.

DOI
7

Carter, B.; Williams, D. B. Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry; Springer: Switzerland, 2016.

8

Hammond, C. The Basics of Crystallography and Diffraction, 3rd ed.; Oxford University Press: Oxford, 2009.

9

Vincent, R.; Midgley, P. A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 1994, 53, 271-282.

10

Eggeman, A. S.; Midgley, P. A. Precession electron diffraction. In Advanced in Imaging and Electron Physics; Hawkes, P. W., Eds.; Elsevier/Academic: Amsterdam, 2012; pp 1-63.

DOI
11

Midgley, P. A.; Eggeman, A. S. Precession electron diffraction-A topical review. IUCrJ 2015, 2, 126-136.

12

Rauch, E. F.; Véron, M.; Portillo, J.; Bultreys, D.; Maniette, Y.; Nicolopoulos S. Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc. Anal. 2008, 22, S5-S8.

13

Béché, A.; Rouvière, J. L.; Barnes, J. P.; Cooper, D. Strain measurement at the nanoscale: Comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography. Ultramicroscopy 2013, 13, 10-23.

14

Cooper, D.; Bernier, N.; Rouvière, J. L. Combining 2 nm spatial resolution and 0.02% precision for deformation mapping of semiconductor specimens in a transmission electron microscope by precession electron diffraction. Nano Lett. 2015, 15, 5289-5294.

15

Cooper, D.; Denneulin, T.; Bernier, N.; Béché, A.; Rouvière, J. L. Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope. Micron 2016, 80, 145-165.

16

Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131-146.

17

Hÿtch, M. J.; Houdellier, F. Mapping stress and strain in nanostructures by high-resolution transmission electron microscopy. Microelectron. Eng. 2007, 84, 460-463.

18

De Graef, M. Introduction to Conventional Transmission Electron Microscopy; Cambridge University Press: Cambridge, 2003.

DOI
19

Zuo, J. M.; Spence, J. C. H. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience; Springer: New York, 2017.

DOI
20

Dacal, L. C. O.; Cantarero, A. Ab initio electronic band structure calculation of InP in the wurtzite phase. Solid State Commun. 2011, 151, 781-784.

21

Eshelby, J. D. Screw dislocations in thin rods. J. Appl. Phys. 1953, 24, 176-179.

22

Eshelby, J. D. The twist in a crystal whisker containing a dislocation. Philos. Mag. 1958, 3, 440-447.

23

Zhu, J.; Peng, H. L.; Marshall, A. F.; Barnett, D. M.; Nix W. D.; Cui, Y. Formation of chiral branched nanowires by the Eshelby Twist. Nat. Nanotechnol. 2008, 3, 477-481.

24

Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V.; Schmitt, A. L.; Jin, S. Dislocation-driven nanowire growth and Eshelby Twist. Science 2008, 320, 1060-1063.

25

Tizei, L. H. G.; Craven, A. J.; Zagonel, L. F.; Tencé, M.; Stéphan, O.; Chiaramonte, T.; Cotta, M. A.; Ugarte D. Enhanced Eshelby twist on thin wurtzite InP nanowires and measurement of local crystal rotation. Phys. Rev. Lett. 2011, 107, 195503.

26

Hiruma, K.; Yazawa, M.; Katsuyama, T.; Ogawa, K.; Haraguchi, K.; Koguchi, M.; Kakibayashi H. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 1995, 77, 447-462.

27

Morin, S. A.; Bierman, M. J.; Tong, J.; Jin, S. Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 2010, 328, 476-480.

28

Wu, H. Y.; Meng, F.; Li, L. S.; Jin, S.; Zheng, G. F. Dislocation-driven CdS and CdSe nanowire growth. ACS Nano 2012, 6, 4461-4468.

29

Meng, F.; Morin, S. A.; Forticaux, A.; Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 2013, 46, 1616-1626.

30

Chauvin, N.; Mavel, A.; Patriarche, G.; Masenelli, B.; Gendry, M.; Machon, D. Pressure-dependent photoluminescence study of wurtzite InP nanowires. Nano Lett. 2016, 16, 2926-2930.

31

De Luca, M.; Polimeni, A. Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy. Appl. Phys. Rev. 2017, 4, 041102.

32

Palatinus, L.; Corrêa, C. A.; Steciuk, G.; Jacob, D.; Roussel, P.; Boullay, P.; Klementová, M.; Gemmi, M.; Kopeček, J.; Domeneghetti, M. C. et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: Tests on experimental data. Acta Cryst. B 2015, 71, 740-751.

33

Palatinus, L.; Petříček, V.; Corrêa, C. A. Structure refinement using precession electron diffraction tomography and dynamical diffraction: Theory and implementation. Acta Cryst. A 2015, 71, 235-244.

34

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89-90.

35

Hayashi, T.; Ohno, T.; Yatsuya, S.; Uyeda, R. Formation of ultrafine metal particles by gas-evaporation technique. IV. Crystal habits of iron and FCC metals, Al, Co, Ni, Cu, Pd, Ag, In, Au and Pb. Jpn. J. Appl. Phys. 1977, 16, 705-717.

36

Frank, F. C. Capillary equilibria of dislocated crystals. Acta Cryst. 1951, 4, 497-501.

37

Anscombe, F. J. The transformation of Poisson, binomial and negative-binomial data. Biometrika 1948, 35, 246-254.

38

Mäkitalo, M.; Foi, A. A closed-form approximation of the exact unbiased inverse of the anscombe variance-stabilizing transformation. IEEE Trans. Image Process. 2011, 20, 2697-2698.

39

Mäkitalo, M.; Foi, A. Optimal inversion of the anscombe transformation in low-count Poisson image denoising. IEEE Trans. Image Process. 2011, 20, 99-109.

40

Azzari, L.; Foi, A. Variance stabilization for noisy+estimate combination in iterative Poisson denoising. IEEE Signal Process. Lett. 2016, 23, 1086-1090.

41

Yang, Y.; Chen, C. C.; Scott, M. C.; Ophus, C.; Xu, R.; Pryor, A.; Wu, L.; Sun, F.; Theis, W.; Zhou, J. H. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 2017, 542, 75-79.

42

Kocks, U. F.; Tomé, C. N.; Wenk, H. R. Texture and Anisotropy; Cambridge University Press: Cambridge, 1998.

43

Morawiec, A.; Bouzy, E.; Paul, H.; Fundenberger, J. J. Orientation precision of TEM-based orientation mapping techniques. Ultramicroscopy 2014, 136, 107-118.

44

Rauch, E. F.; Véron, M. Virtual dark-field images reconstructed from electron diffraction patterns. Eur. Phys. J. Appl. Phys. 2014, 66, 10701.

45

Liao, Y. F.; Marks, L. D. On the alignment for precession electron diffraction. Ultramicroscopy 2012, 117, 1-6.

46

Barnard, J. S.; Johnstone, D. N.; Midgley, P. A. High-resolution scanning precession electron diffraction: Alignment and spatial resolution. Ultramicroscopy 2017, 174, 79-88.

47

Eggeman, A. S.; London, A.; Midgley, P. A. Ultrafast electron diffraction pattern simulations using GPU technology. Applications to lattice vibrations. Ultramicroscopy 2013, 134, 44-47.

Video
12274_2019_2328_MOESM1_ESM.avi
12274_2019_2328_MOESM2_ESM.avi
File
12274_2019_2328_MOESM3_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 11 October 2018
Revised: 17 January 2019
Accepted: 04 February 2019
Published: 12 March 2019
Issue date: April 2019

Copyright

© The Authors(s) 2019

Acknowledgements

Acknowledgements

We thank Dr Z. Saghi for taking the ADF-STEM images of the twisted wires. D. U. acknowledges financial support from the Brazilian Agencies FAPESP (No. 2014/01045-0) and CNPq (No. 302767/2012-6). A. E. acknowledges funding from the Royal Society. P. A. M. acknowledges financial support from European Research Council through grant 291522-3DIMAGE and the EPSRC grant number EP/R025517/1. M. A. C. acknowledges financial support from FAPESP (Nos. 2013/02300-1 and 2013/10957-0) and CNPq (No. 479486/ 2012-3). L. H. G. T. and P. A. M. acknowledge funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 312483 (ESTEEM2).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return