Journal Home > Volume 12 , Issue 6

Utilizing vacuum-tuned-atmosphere induced dip coating method, we achieve the cross-dimensional macroscopic diverse self-assemblies by using one building block with one chemical functionality. Coordinated modulating the vacuum degree, colloid concentration and evaporation atmosphere, Au@Ag core/shell nanocubes (NCs) can controllably assemble into diverse multi-dimensional superstructures. Under 0.08 MPa, we obtained the two-dimensional (2D) stepped superstructures with continuously tunable step width. In addition, we generated a series of tailorable nanoscale-roughened 2D Au@Ag NCs superstructures at 0.04 MPa, which exhibited the label-free ultrasensitive SERS detection for the different mutants of IAPP8-37 proteins. Under 0.01 MPa, we obtained the cross-dimensional tailorable Au@Ag NCs assemblies from random to macroscale 2D and three-dimensional (3D) densest superstructures by adjusting the capping ligand-environmental molecule interactions. This is a flexible method to generate as-prepared Au@Ag core/shell NCs into well-defined macroscopic diverse superstructures and to promote the exploitation into biological applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vacuum-tuned-atmosphere induced assembly of Au@Ag core/shell nanocubes into multi-dimensional superstructures and the ultrasensitive IAPP proteins SERS detection

Show Author's information Meng Xu1Guopeng Tu1Muwei Ji2,3Xiaodong Wan1Jiajia Liu1Jia Liu1Hongpan Rong1Yanlian Yang4Chen Wang4Jiatao Zhang1( )
Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications,Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology,Beijing,100081,China;
Institute of Low-dimensional Materials Genome Initiative,College of chemistry and environmental engineering, Shenzhen University, Guangdong,Shenzhen,518060,China;
Graduate School at Shenzhen,Tsinghua University,Shenzhen,518055,China;
National Center for Nanoscience and Technology (NCNST),Chinese Academy of Sciences,Beijing,100190,China;

Abstract

Utilizing vacuum-tuned-atmosphere induced dip coating method, we achieve the cross-dimensional macroscopic diverse self-assemblies by using one building block with one chemical functionality. Coordinated modulating the vacuum degree, colloid concentration and evaporation atmosphere, Au@Ag core/shell nanocubes (NCs) can controllably assemble into diverse multi-dimensional superstructures. Under 0.08 MPa, we obtained the two-dimensional (2D) stepped superstructures with continuously tunable step width. In addition, we generated a series of tailorable nanoscale-roughened 2D Au@Ag NCs superstructures at 0.04 MPa, which exhibited the label-free ultrasensitive SERS detection for the different mutants of IAPP8-37 proteins. Under 0.01 MPa, we obtained the cross-dimensional tailorable Au@Ag NCs assemblies from random to macroscale 2D and three-dimensional (3D) densest superstructures by adjusting the capping ligand-environmental molecule interactions. This is a flexible method to generate as-prepared Au@Ag core/shell NCs into well-defined macroscopic diverse superstructures and to promote the exploitation into biological applications.

Keywords: self-assembly, superstructure, Au@Ag core/shell nanocubes (NCs), surface enhanced Raman scattering (SERS) detection, islet amyloid-like polypeptide

References(43)

1

Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389-458.

2

Ross, M. B.; Ku, J. C.; Vaccarezza, V. M.; Schatz, G. C.; Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 2015, 10, 453-458.

3

Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. D. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2012, 11, 131-137.

4

Zhu, Z. N.; Meng, H. F.; Liu, W. J.; Liu, X. F.; Gong, J. X.; Qiu, X. H.; Jiang, L.; Wang, D.; Tang, Z. Y. Superstructures and SERS properties of gold nanocrystals with different shapes. Angew. Chem., Int. Ed. 2011, 50, 1593-1596.

5

Nagaoka, Y.; Tan, R.; Li, R. P.; Zhu, H.; Eggert, D.; Wu, Y. A.; Liu, Y. Z.; Wang, Z. W.; Chen, O. Superstructures generated from truncated tetrahedral quantum dots. Nature 2018, 561, 378-382.

6

Hu, S.; Liu, H. L.; Wang, P. P.; Wang, W. Inorganic nanostructures with sizes down to 1 nm: A macromolecule analogue. J. Am. Chem. Soc. 2013, 135, 11115-11124.

7

Dong, A. G.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474-477.

8

Bodnarchuk, M. I.; Kovalenko, M. V.; Heiss, W.; Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: Temperature as the structure-directing factor. J. Am. Chem. Soc. 2010, 132, 11967-11977.

9

Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem., Int. Ed. 2008, 47, 9685-9690.

10

Chiu, C. Y.; Chen, C. K.; Chang, C. W.; Jeng, U. S.; Tan, C. S.; Yang, C. W.; Chen, L. J.; Yen, T. J.; Huang, M. H. Surfactant-directed fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties. J. Am. Chem. Soc. 2015, 137, 2265-2275.

11

Huang, L.; Zheng, J. J.; Huang, L. L.; Liu, J.; Ji, M. W.; Yao, Y.; Xu, M.; Liu, J. J.; Zhang, J. T.; Li, Y. D. Controlled synthesis and flexible self-assembly of monodisperse Au@semiconductor core/shell hetero-nanocrystals into diverse superstructures. Chem. Mater. 2017, 29, 2355-2363.

12

Zheng, J. J.; Dai, B. S.; Liu, J.; Liu, J. L.; Ji, M. W.; Liu, J. J.; Zhou, Y. M.; Xu, M.; Zhang, J. T. Hierarchical self-assembly of Cu7Te5 nanorods into superstructures with enhanced SERS performance. ACS Appl. Mater. Interfaces 2016, 8, 35426-35434.

13

Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals:  Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016-4022.

14

Li, W. J.; Zhong, X. H. Capping ligand-induced self-assembly for quantum dot sensitized solar cells. J. Phys. Chem. Lett. 2015, 6, 796-806.

15

Pinchetti, V.; Di, Q. M.; Lorenzon, M.; Camellini, A.; Fasoli, M.; Zavelani-Rossi, M.; Meinardi, F.; Zhang, J. T.; Crooker, S. A.; Brovelli, S. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nat. Nanotechnol. 2018, 13, 145-151.

16

Zhao, Q.; Zhang, J. T.; Zhu, H. S. A facile strategy to prepare monodisperse nanocrystals with initiative assembly into superlattice. Prog Nat Sci-Mater. 2013, 23, 588-592.

17

Zhang, Y.; Wang, M. S.; Zhu, E. B.; Zheng, Y. B.; Huang, Y.; Huang X. Q. Seedless growth of palladium nanocrystals with tunable structures: From tetrahedra to nanosheets. Nano Lett. 2015, 15, 7519-7525.

18

Bu, L. Z.; Feng, Y. G.; Yao, J. L.; Guo, S. J.; Guo, J.; Huang, X. Q. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Res. 2016, 9, 2811-2821.

19

Qian, H. M.; Zhao, Q.; Dai, B. S.; Guo, L. J.; Zhang, J. X.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Oriented attachment of nanoparticles to form micrometer-sized nanosheets/nanobelts by topotactic reaction on rigid/flexible substrates with improved electronic properties. NPG Asia Mater. 2015, 7, e152.

20

Yang, Y. J.; Lee, Y. H.; Phang, I. Y.; Jiang, R. B.; Sim, H. Y. F.; Wang, J. F.; Ling, X. Y. A chemical approach to break the planar configuration of Ag nanocubes into tunable two-dimensional metasurfaces. Nano Lett. 2016, 16, 3872-3878.

21

Yang, Y. J.; Lee, Y. H.; Lay, C. L.; Ling, X. Y. Tuning molecular-level polymer conformations enables dynamic control over both the interfacial behaviors of Ag nanocubes and their assembled metacrystals. Chem. Mater. 2017, 29, 6137-6144.

22

Lewandowski, W.; Fruhnert, M.; Mieczkowski, J.; Rockstuhl, C.; Górecka, E. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat. Commun. 2015, 6, 6590.

23

Wei, J. J.; Schaeffer, N.; Pileni, M. P. Solvent-mediated crystallization of nanocrystal 3D assemblies of silver nanocrystals: Unexpected superlattice ripening. Chem. Mater. 2016, 28, 293-302.

24

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220-11289.

25

Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbó-Argibay, E.; Pazos-Pérez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A. et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 2011, 108, 8157-8161.

26

Lane, L. A.; Qian, X. M.; Nie, S. M. SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489-10529.

27

Kleinman, S. L.; Sharma, B.; Blaber, M. G.; Henry, A. I.; Valley, N.; Freeman, R. G.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J. Am. Chem. Soc. 2013, 135, 301-308.

28

Li, J. F.; Anema, J. R.; Wandlowskic, T.; Tian, Z. Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 2015, 44, 8399-8409.

29

Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460-10463.

30

Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176-2179.

31

Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268-274.

32

Ling, X. Y.; Yan, R. X.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. D. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132-143.

33

Li, C. Y.; Fan, F. R.; Yin, B. S.; Chen, L.; Ganguly, T.; Tian, Z. Q. Au+-cetyltrimethylammonium bromide solution: A novel precursor for seed-mediated growth of gold nanoparticles in aqueous solution. Nano Res. 2013, 6, 29-37.

34

Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201-7206.

35

Tu, G. P.; Deogratias, N.; Xu, M.; Li, X. W.; Liu, J. J.; Jiang, L.; Yang, Y. L.; Zhang, J. T. Sharp-featured Au@Ag core/shell nanocuboid synthesis and the label-free ultrasensitive SERS detection of protein single-point mutations. Mater. Chem. Front. 2018, 2, 1720-1724.

36

Gaulding, E. A.; Diroll, B. T.; Goodwin, E. D.; Vrtis, Z. J.; Kagan, C. R.; Murray, C. B. Deposition of wafer-scale single-component and binary nanocrystal superlattice thin films via dip-coating. Adv. Mater. 2015, 27, 2846-2851.

37

Boniello, G.; Blanc, C.; Fedorenko, D.; Medfai, M.; Mbarek, N. B.; In, M.; Gross, M.; Stocco, A.; Nobili, M. Brownian diffusion of a partially wetted colloid. Nat. Mater. 2015, 14, 908-911.

38

Yang, Y. L.; Wang, C. Hierarchical construction of self-assembled low-dimensional molecular architectures observed by using scanning tunneling microscopy. Chem. Soc. Rev. 2009, 38, 2576-2589.

39

Bao, W.; Melli, M.; Caselli, N.; Riboli, F.; Wiersma, D. S.; Staffaroni, M.; Choo, H.; Ogletree, D. F.; Aloni, S.; Bokor, J. et al. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 2012, 338, 1317-1321.

40

Pavan Kumar, G. V.; Ashok Reddy, B. A.; Arif, M.; Kundu, T. K.; Narayana, C. Surface-enhanced Raman scattering studies of human transcriptional coactivator p300. J. Phys. Chem. B 2006, 110, 16787-16792.

41

Podstawka-Proniewicz, E.; Piergies, N.; Skołuba, D.; Kafarski, P.; Kim, Y.; Proniewicz, L. M. Vibrational characterization of L-leucine phosphonate analogues: FT-IR, FT-Raman, and SERS spectroscopy studies and DFT calculations. J. Phys. Chem. A 2011, 115, 11067-11078.

42

Brulé, T.; Yockell-Lelièvre, H.; Bouhélier, A.; Margueritat, J.; Markey, L.; Leray, A.; Dereux, A.; Finot, E. Sorting of enhanced reference Raman spectra of a single amino acid molecule. J. Phys. Chem. C 2014, 118, 17975-17982.

43

Choi, I.; Huh, Y. S.; Erickson, D. Ultra-sensitive, label-free probing of the conformational characteristics of amyloid beta aggregates with a SERS active nanofluidic device. Microfluid. Nanofluid. 2012, 12, 663-669.

File
12274_2019_2325_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2018
Revised: 17 January 2019
Accepted: 29 January 2019
Published: 29 May 2019
Issue date: June 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872030, 51631001, 21643003, 51702016, and 51501010) and Fundamental Research Funds for the Central Universities and Beijing Institute of Technology Research Fund Program for Young Scholars and ZDKT18-01 fund from State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology). We acknowledge critical and quantity of testing work supported by Beijing Zhongkebaice Technology Service Co., Ltd.

Return