Journal Home > Volume 12 , Issue 4

In this study, a pseudo-layered Na super-ionic conductor of Na3V2(PO4)2F3 (NVPF)/C cathode for sodium-ion batteries is prepared successfully using a facile polyol refluxing process without any impurity phases. The X-ray diffraction and Rietveld refinement results confirm that NVPF possesses tetragonal NASICON-type lattice with a space group of P42/mnm. In this preparative method, polyol is utilized as a solvent as well as a carbon source. The presence of nanosized NVPF particles in the carbon network is confirmed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The existence of carbon is analyzed by Raman scattering and elemental analysis. When applied as a Na-storage material in a potential window of 2.0–4.3 V, the electrode exhibits two flat voltage plateaus at 3.7 and 4.2 V with an electrochemically active V3+/V4+ redox couple. In addition, Na3V2(PO4)2F3/C composite achieved a retention capacity of ~ 88% even after 1, 500 cycles at 15 C. Moreover, at high current densities of 30 and 50 C, Na3V2(PO4)2F3/C cathode retains the specific discharge capacities of 108.4 and 105.9 mAh·g–1, respectively, revealing the structural stability of the material prepared through a facile polyol refluxing method.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries

Show Author's information Sohyun Park1Jinju Song2Seyeon Kim1Balaji Sambandam1Vinod Mathew1Sungjin Kim1Jeonggeun Jo1Seokhun Kim1Jaekook Kim1( )
Department of Materials Science and Engineering,Chonnam National University, 300 Yongbong-dong, Buk-gu,Gwangju,500-757,Republic of Korea;
Gwangju Bio/Energy R & D Center,Korea Institute of Energy Research (KIER), 270-25 Samso-ro, Buk-gu,Gwangju,61003,Republic of Korea;

Abstract

In this study, a pseudo-layered Na super-ionic conductor of Na3V2(PO4)2F3 (NVPF)/C cathode for sodium-ion batteries is prepared successfully using a facile polyol refluxing process without any impurity phases. The X-ray diffraction and Rietveld refinement results confirm that NVPF possesses tetragonal NASICON-type lattice with a space group of P42/mnm. In this preparative method, polyol is utilized as a solvent as well as a carbon source. The presence of nanosized NVPF particles in the carbon network is confirmed by field-emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The existence of carbon is analyzed by Raman scattering and elemental analysis. When applied as a Na-storage material in a potential window of 2.0–4.3 V, the electrode exhibits two flat voltage plateaus at 3.7 and 4.2 V with an electrochemically active V3+/V4+ redox couple. In addition, Na3V2(PO4)2F3/C composite achieved a retention capacity of ~ 88% even after 1, 500 cycles at 15 C. Moreover, at high current densities of 30 and 50 C, Na3V2(PO4)2F3/C cathode retains the specific discharge capacities of 108.4 and 105.9 mAh·g–1, respectively, revealing the structural stability of the material prepared through a facile polyol refluxing method.

Keywords: sodium ion batteries, fluorophosphate, Na3V2(PO4)2F3, polyol process, long life stability

References(36)

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

2

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.

3

Zu, C. X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614-2624.

4

Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201-1217.

5

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.

6

Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512-517.

7

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.

8

Ding, J. J.; Zhou, Y. N.; Sun, Q.; Fu, Z. W. Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem. Commun. 2012, 22, 85-88.

9

Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74-80.

10

Oh, S. M.; Myung, S. T.; Hassoun, J.; Scrosati, B.; Sun, Y. K. Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem. Commun. 2012, 22, 149-152.

11

Zhuo, H. T.; Wang, X. Y.; Tang, A. P.; Liu, Z. M.; Gamboa, S.; Sebastian, P. J. The preparation of NaV1-xCrxPO4F cathode materials for sodium-ion battery. J. Power Sources 2006, 160, 698-703.

12

Kabbour, H.; Coillot, D.; Colmont, M.; Masquelier, C.; Mentré, O. α-Na3M2(PO4)3 (M = Ti, Fe): Absolute cationic ordering in NASICON-type phases. J. Am. Chem. Soc. 2011, 133, 11900-11903.

13

Shakoor, R. A.; Seo, D. H.; Kim, H.; Park, Y. U.; Kim, J.; Kim, S. W.; Gwon, H.; Lee, S.; Kang, K. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 2012, 22, 20535-20541.

14

Song, W. X.; Ji, X. B.; Pan, C. C.; Zhu, Y. R.; Chen, Q. Y.; Banks, C. E. A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 14357-14363.

15

Le Meins, J. M.; Crosnier-Lopez, M. P.; Hemon-Ribaud, A.; Courbion, G. Phase transitions in the Na3M2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 1999, 148, 260-277.

16

Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A. M.; Tarascon, J. M. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat. Commun. 2016, 7, 10308.

17

Jiang, T.; Chen, G.; Li, A.; Wang, C. Z.; Wei, Y. J. Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J. Alloys Compd. 2009, 478, 604-607.

18

Kumar, P. R.; Jung, Y. H.; Kim, D. K. Influence of carbon polymorphism towards improved sodium storage properties of Na3V2O2x(PO4)2F3-2x. J. Solid State Electrochem. 2017, 21, 223-232.

19

Liu, Q.; Wang, D. X.; Yang, X.; Chen, N.; Wang, C. Z.; Bie, X. F.; Wei, Y. J.; Chen, G.; Du, F. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. J. Mater. Chem. A 2015, 3, 21478-21485.

20

Paul, B. J.; Kang, S. W.; Gim, J.; Song, J. J.; Kim, S.; Mathew, V.; Kim, J. Nucleation and growth controlled polyol synthesis of size-focused nanocrystalline LiFePO4 cathode for high performance li-ion batteries. J. Electrochem. Soc. 2014, 161, A1468-A1473.

21

Mathew, V.; Alfaruqi, M. H.; Gim, J.; Song, J. J.; Kim, S.; Ahn, D.; Kim, J. Morphology-controlled LiFePO4 cathodes by a simple polyol reaction for Li-ion batteries. Mater. Charact. 2014, 89, 93-101.

22

Long, Y. F.; Zhang, Z. H.; Wu, Z.; Su, J.; Lv, X. Y.; Wen, Y. X. Microwave-assisted polyol synthesis of LiMnPO4/C and its use as a cathode material in lithium-ion batteries. Particuology 2017, 33, 42-49.

23

Uchaker, E.; Zhou, N.; Li, Y. W.; Cao, G. Z. Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J. Phys. Chem. C 2013, 117, 1621-1626.

24

Cui, Y. T.; Xu, N.; Kou, L. Q.; Wu, M. T.; Chen, L. Enhanced electrochemical performance of different morphological C/LiMnPO4 nanoparticles from hollow-sphere Li3PO4 precursor via a delicate polyol-assisted hydrothermal method. J. Power Sources 2014, 249, 42-47.

25

Kim, D. H.; Kim, J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid-State Lett. 2006, 9, A439-A442.

26

Liu, Z. G.; Hu, Y. Y.; Dunstan, M. T.; Huo, H.; Hao, X. G.; Zou, H.; Zhong, G. M.; Yang, Y.; Grey, C. P. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3. Chem. Mater. 2014, 26, 2513-2521.

27

Ferrari, A. C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414.

28

Doeff, M. M.; Hu, Y. Q.; McLarnon, F.; Kostecki, R. Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid-State Lett. 2003, 6, A207-A209.

29

Wilcox, J. D.; Doeff, M. M.; Marcinek, M.; Kostecki, R. Factors influencing the quality of carbon coatings on LiFePO4. J. Electrochem. Soc. 2007, 154, A389-A395.

30

Song, W. X.; Ji, X. B.; Wu, Z. P.; Yang, Y. C.; Zhou, Z.; Li, F. Q.; Chen, Q. Y.; Banks, C. E. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. J. Power Sources 2014, 256, 258-263.

31

Liu, Q.; Meng, X.; Wei, Z. X.; Wang, D. X.; Gao, Y.; Wei, Y. J.; Du, F.; Chen, G. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 31709-31715.

32

Song, W. X.; Cao, X. Y.; Wu, Z. P.; Chen, J.; Zhu, Y. R.; Hou, H. S.; Lan, Q.; Ji, X. B. Investigation of the sodium ion pathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation. Langmuir 2014, 30, 12438-12446.

33

Park, Y. U.; Seo, D. H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1-xPO4)2 F1+2x (0 ≤ x ≤ 1): Combined first-principles and experimental study. Adv. Funct. Mater. 2014, 24, 4603-4614.

34

Bianchini, M.; Xiao, P. H.; Wang, Y.; Ceder, G. Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries. Adv. Energy Mater. 2017, 7, 1700514

35

Zhu, C. B.; Wu, C.; Chen, C. C.; Kopold, P.; Van Aken, P. A.; Maier, J.; Yu, Y. A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization. Chem. Mater. 2017, 29, 5207-5215.

36

Yin, S. C.; Grondey, H.; Strobel, P.; Anne, M.; Nazar, L. F. Electrochemical property: Structure relationships in monoclinic Li3-YV2(PO4)3. J. Am. Chem. Soc. 2003, 125, 10402-10411.

File
12274_2019_2322_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 November 2018
Revised: 16 January 2019
Accepted: 29 January 2019
Published: 07 March 2019
Issue date: April 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgemets

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1A2A1A17069397). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A5A1025224).

Return