Journal Home > Volume 12 , Issue 4

Inspired by the clinically approved albumin based PTX formulation (Abraxane) and high-drug-loading dimeric prodrug tactics, herein we report a theranostic "Abraxane-like" prodrug formulation, which is comprised of human serum albumin (HSA), a paclitaxel (PTX) dimer bridged with thioether liner (PTX2-S), and photosensitizer IR780 iodide. Nanoparticles (NPs) with PTX2-S and IR780 as the core and HSA as the stealth shell are formed. Compared with HSA-based PTX clinical formulation (Abraxane), the dimeric molecules not only constitute the bulk structure of the particles, but also act as crossing agent, thus realizing drug loading content increasing from 6.6 wt.% to 48.7 wt.% with high loading efficiency (> 90%) and excellent stability in biological conditions. Importantly, the thioether linkage dually responds to the tumor redox heterogeneity and the NPs gradually releases the parent drug PTX for chemotherapy. Meanwhile, PTX2-S facilitates the encapsulation of IR780 iodide due to their π-π stacking interaction and IR780 iodide generates spatio-temporal hyperthermia under light irradiation to kill cancer cells for photothermal therapy. The described craft integrates the biomimetic trait of HSA, high drug loading, tumor redox heterogeneity- initiated on-demand drug release, and combination therapy into one formulation and the developed nanoparticles are promising for cancer treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy

Show Author's information Qing Pei1,2Xiuli Hu1( )Xiaohua Zheng1,2Rui Xia1,2Shi Liu1Zhigang Xie1( )Xiabin Jing1
State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun,130022,China;
University of Science and Technology of China,Hefei,230026,China;

Abstract

Inspired by the clinically approved albumin based PTX formulation (Abraxane) and high-drug-loading dimeric prodrug tactics, herein we report a theranostic "Abraxane-like" prodrug formulation, which is comprised of human serum albumin (HSA), a paclitaxel (PTX) dimer bridged with thioether liner (PTX2-S), and photosensitizer IR780 iodide. Nanoparticles (NPs) with PTX2-S and IR780 as the core and HSA as the stealth shell are formed. Compared with HSA-based PTX clinical formulation (Abraxane), the dimeric molecules not only constitute the bulk structure of the particles, but also act as crossing agent, thus realizing drug loading content increasing from 6.6 wt.% to 48.7 wt.% with high loading efficiency (> 90%) and excellent stability in biological conditions. Importantly, the thioether linkage dually responds to the tumor redox heterogeneity and the NPs gradually releases the parent drug PTX for chemotherapy. Meanwhile, PTX2-S facilitates the encapsulation of IR780 iodide due to their π-π stacking interaction and IR780 iodide generates spatio-temporal hyperthermia under light irradiation to kill cancer cells for photothermal therapy. The described craft integrates the biomimetic trait of HSA, high drug loading, tumor redox heterogeneity- initiated on-demand drug release, and combination therapy into one formulation and the developed nanoparticles are promising for cancer treatment.

Keywords: human serum albumin, prodrug nanoparticles, tumor redox heterogeneity-responsiveness, controlled drug release, synergistic cancer therapy

References(60)

1

Sparreboom, A.; Scripture, C. D.; Trieu, V.; Williams, P. J.; De, T.; Yang, A.; Beals, B.; Figg, W. D.; Hawkins, M.; Desai, N. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin. Cancer Res. 2005, 11, 4136–4143.

2

Contreras-Cáceres, R.; Leiva, M. C.; Ortiz, R.; Díaz, A.; Perazzoli, G.; Casado-Rodríguez, M. A.; Melguizo, C.; Baeyens, J. M.; López-Romero, J. M.; Prados, J. Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines. Nano Res. 2017, 10, 856–875.

3

Bhattacharyya, J.; Bellucci, J. J.; Weitzhandler, I.; McDaniel, J. R.; Spasojevic, I.; Li, X. H.; Lin, C. C.; Chi, J. T. A.; Chilkoti, A. A paclitaxel- loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models. Nat. Commun. 2015, 6, 7939.

4

Wang, Y.; Cheetham, A. G.; Angacian, G.; Su, H.; Xie, L. S.; Cui, H. G. Peptide-drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Del. Rev. 2017, 110111, 112–126.

5

Mitragotri, S.; Anderson, D. G.; Chen, X. Y.; Chow, E. K.; Ho, D.; Kabanov, A. V.; Karp, J. M.; Kataoka, K.; Mirkin, C. A.; Petrosko, S. H. et al. Accelerating the translation of nanomaterials in biomedicine. ACS Nano 2015, 9, 6644–6654.

6

Zhang, Y. M.; Zhang, N. Y.; Xiao, K.; Yu, Q.; Liu, Y. Photo-controlled reversible microtubule assembly mediated by paclitaxel-modified cyclodextrin. Angew. Chem., Int. Ed. 2018, 57, 8649–8653.

7

Sun, B. Y.; Straubinger, R. M.; Lovell, J. F. Current taxane formulations and emerging cabazitaxel delivery systems. Nano Res. 2018, 11, 5193–5218.

8

Xu, C. C.; Li, H.; Zhang, K. M.; Binzel, D. W.; Yin, H. R.; Chiu, W.; Guo, P. X. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Res. 2019, 12, 41–48.

9

Green, M. R.; Manikhas, G. M.; Orlov, S.; Afanasyev, B.; Makhson, A. M.; Bhar, P.; Hawkins, M. J. Abraxane®, a novel Cremophor®-free, albumin- bound particle form of paclitaxel for the treatment of advanced non-small- cell lung cancer. Ann. Oncol. 2006, 17, 1263–1268.

10

Gradishar, W. J. Albumin-bound paclitaxel: A next-generation taxane. Expert Opin. Pharmacother. 2006, 7, 1041–1053.

11

Desai, N.; Trieu, V.; Yao, Z. W.; Louie, L.; Ci, S.; Yang, A.; Tao, C. L.; De, T.; Beals, B.; Dykes, D. et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 2006, 12, 1317–1324.

12

Kasai, H.; Murakami, T.; Ikuta, Y.; Koseki, Y.; Baba, K.; Oikawa, H.; Nakanishi, H.; Okada, M.; Shoji, M.; Ueda, M. et al. Creation of pure nanodrugs and their anticancer properties. Angew. Chem. , Int. Ed. 2012, 51, 10315–10318.

13

Cai, K. M.; He, X.; Song, Z. Y.; Yin, Q.; Zhang, Y. F.; Uckun, F. M.; Jiang, C.; Cheng, J. J. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J. Am. Chem. Soc. 2015, 137, 3458–3461.

14

Huang, P.; Wang, D. L.; Su, Y.; Huang, W.; Zhou, Y. F.; Cui, D. X.; Zhu, X. Y.; Yan, D. Y. Combination of small molecule prodrug and nanodrug delivery: Amphiphilic drug-drug conjugate for cancer therapy. J. Am. Chem. Soc. 2014, 136, 11748–11756.

15

Guo, X.; Wang, L.; Duval, K.; Fan, J.; Zhou, S. B.; Chen, Z. Dimeric drug polymeric micelles with acid-active tumor targeting and FRET-traceable drug release. Adv. Mater. 2018, 30, 1705436.

16

Han, X. F.; Chen, J. L.; Jiang, M. J.; Zhang, N.; Na, K. X.; Luo, C.; Zhang, R. S.; Sun, M. C.; Lin, G. M.; Zhang, R. et al. Paclitaxel–paclitaxel prodrug nanoassembly as a versatile nanoplatform for combinational cancer therapy. ACS Appl. Mater. Interfaces 2016, 8, 33506–33513.

17

Zhang, J. F.; Li, S. L.; An, F. F.; Liu, J.; Jin, S. B.; Zhang, J. C.; Wang, P. C.; Zhang, X. H.; Lee, C. S.; Liang, X. J. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale 2015, 7, 13503–13510.

18

Xing, P. Y.; Zhao, Y. L. . Multifunctional nanoparticles self-assembled from small organic building blocks for biomedicine. Adv. Mater. 2016, 28, 7304–7339.

19

Wang, H.; Xu, M.; Xiong, M. H.; Cheng, J. J. Reduction-responsive dithiomaleimide-based nanomedicine with high drug loading and FRET- indicated drug release. Chem. Commun. 2015, 51, 4807–4810.

20

Lorenz, S. A.; Bigwarfe Jr, P. M.; Balasubramanian, S. V.; Fetterly, G. J.; Straubinger, R. M.; Wood, T. D. Noncovalent dimerization of paclitaxel in solution: Evidence from electrospray ionization mass spectrometry. J. Pharm. Sci. 2002, 91, 2057–2066.

21

Tam, Y. T.; Gao, J. M.; Kwon, G. S. Oligo(lactic acid)n-paclitaxel prodrugs for poly(ethylene glycol)-block-poly(lactic acid) micelles: Loading, release, and backbiting conversion for anticancer activity. J. Am. Chem. Soc. 2016, 138, 8674–8677.

22

Pei, Q.; Hu, X. L.; Liu, S.; Li, Y.; Xie, Z. G.; Jing, X. B. Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. J. Control. Release 2017, 254, 23–33.

23

Pei, Q.; Hu, X. L.; Zheng, X. H.; Liu, S.; Li, Y. W.; Jing, X. B.; Xie, Z. G. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 2018, 12, 1630–1641.

24

Hu, Q. Y.; Chen, Q.; Gu, Z. Advances in transformable drug delivery systems. Biomaterials 2018, 178, 546–558.

25

Chen, C. K.; Law, W. C.; Aalinkeel, R.; Yu, Y.; Nair, B.; Wu, J. C.; Mahajan, S.; Reynolds, J. L.; Li, Y. K.; Lai, C. K. et al. Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug-gene co-delivery to cancer cells. Nanoscale 2014, 6, 1567–1572.

26

Song, M. L.; Liu, N.; He, L.; Liu, G.; Ling, D. S.; Su, X. H.; Sun, X. L. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Res. 2018, 11, 2796–2808.

27

Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe. Chem. Soc. Rev. 2018, 47, 2280–2297.

28

Zhao, P. H.; Jin, Z. K.; Chen, Q.; Yang, T.; Chen, D. Y.; Meng, J.; Lu, X. F.; Gu, Z.; He, Q. J. Local generation of hydrogen for enhanced photothermal therapy. Nat. Commun. 2018, 9, 4241.

29

Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 2018, 12, 5995–6005.

30

Chen, Y. J.; Li, Z. H.; Wang, H. B.; Wang, Y.; Han, H. J.; Jin, Q.; Ji, J. IR-780 loaded phospholipid mimicking homopolymeric micelles for near-ir imaging and photothermal therapy of pancreatic cancer. ACS Appl. Mater. Interfaces 2016, 8, 6852–6858.

31

Wang, K. K.; Zhang, Y. F.; Wang, J.; Yuan, A. H.; Sun, M. J.; Wu, J. H.; Hu, Y. Q. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421.

32

Zhang, C.; Liu, T.; Su, Y. P.; Luo, S. L.; Zhu, Y.; Tan, X.; Fan, S.; Zhang, L. L.; Zhou, Y.; Cheng, T. M. et al. A near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomaterials 2010, 31, 6612–6617.

33

Peng, C. L.; Shih, Y. H.; Lee, P. C.; Hsieh, T. M. H.; Luo, T. Y.; Shieh, M. J. Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano 2011, 5, 5594–5607.

34

Chen, Q.; Wang, X.; Wang, C.; Feng, L. Z.; Li, Y. G.; Liu, Z. Drug- induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano 2015, 9, 5223–5233.

35

Chen, Q.; Liu, Z. Albumin carriers for cancer theranostics: A conventional platform with new promise. Adv. Mater. 2016, 28, 10557–10566.

36

Rong, P. F.; Huang, P.; Liu, Z. G.; Lin, J.; Jin, A.; Ma, Y.; Niu, G.; Yu, L.; Zeng, W. B.; Wang, W. et al. Protein-based photothermal theranostics for imaging-guided cancer therapy. Nanoscale 2015, 7, 16330–16336.

37

Paál, K.; Müller, J.; Hegedûs, L. High affinity binding of paclitaxel to human serum albumin. Eur. J. Biochem. 2001, 268, 2187–2191.

38

Chen, Q.; Liang, C.; Wang, C.; Liu, Z. An imagable and photothermal "Abraxane-like" nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv. Mater. 2015, 27, 903–910.

39

Desai, N. Nab technology: A drug delivery platform utilising endothelial gp60 receptor-based transport and tumour-derived SPARC for targeting. Drug Deliv. Rep. 2007, 37–41.

40

Shen, Y. Q.; Jin, E. L.; Zhang, B.; Murphy, C. J.; Sui, M. H.; Zhao, J.; Wang, J. Q.; Tang, J. B.; Fan, M. H.; Van Kirk, E. et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J. Am. Chem. Soc. 2010, 132, 4259–4265.

41

Yang, J.; Lv, Q.; Wei, W.; Yang, Z.; Dong, J.; Zhang, R.; Kan, Q.; He, Z.; Xu, Y. Bioresponsive albumin-conjugated paclitaxel prodrugs for cancer therapy. Drug Deliv. 2018, 25, 807–814.

42

Pei, Q.; Hu, X. L.; Zhou, J. L.; Liu, S.; Xie, Z. G. Glutathione-responsive paclitaxel dimer nanovesicles with high drug content. Biomater. Sci. 2017, 5, 1517–1521.

43

Luo, C.; Sun, J.; Liu, D.; Sun, B. J.; Miao, L.; Musetti, S.; Li, J.; Han, X. P.; Du, Y. Q.; Li, L. et al. Self-assembled redox dual-responsive prodrug- nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 2016, 16, 5401–5408.

44

Eetezadi, S.; Ekdawi, S. N.; Allen, C. The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Adv. Drug Deliv. Rev. 2015, 91, 7–22.

45

MacEwan, S. R.; Chilkoti, A. From composition to cure: A systems engineering approach to anticancer drug carriers. Angew. Chem. , Int. Ed. 2017, 56, 6712–6733.

46

Gong, G. M.; Xu, Y.; Zhou, Y. Y.; Meng, Z. J.; Ren, G. Y.; Zhao, Y.; Zhang, X.; Wu, J. H.; Hu, Y. Q. Molecular switch for the assembly of lipophilic drug incorporated plasma protein nanoparticles and in vivo image. Biomacromolecules 2012, 13, 23–28.

47

Ding, D. W.; Tang, X. L.; Cao, X. L.; Wu, J. H.; Yuan, A. H.; Qiao, Q.; Pan, J.; Hu, Y. Q. Novel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacy. AAPS PharmSciTech 2014, 15, 213–222.

48

Zhao, S. F.; Wang, W. T.; Huang, Y. B.; Fu, Y. H.; Cheng, Y. Paclitaxel loaded human serum albumin nanoparticles stabilized with intermolecular disulfide bonds. Med. Chem. Comm. 2014, 5, 1658–1663.

49

Lu, Y.; Zhang, E. S.; Yang, J. H.; Cao, Z. Q. Strategies to improve micelle stability for drug delivery. Nano Res. 2018, 11, 4985–4998.

50

Wang, J. Q.; Sun, X. R.; Mao, W. W.; Sun, W. L.; Tang, J. B.; Sui, M. H.; Shen, Y. Q.; Gu, Z. W. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy. Adv. Mater. 2013, 25, 3670–3676.

51

Xiao, C. S.; Ding, J. X.; Ma, L. L.; Yang, C. G.; Zhuang, X. L.; Chen, X. S. Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polym. Chem. 2015, 6, 738–747.

52

Jiang, C. X.; Cheng, H.; Yuan, A. H.; Tang, X. L.; Wu, J. H.; Hu, Y. Q. Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater. 2015, 14, 61–69.

53

Zhang, X. H.; Wang, L.; Liu, S.; Zhang, W.; Liu, F.; Xie, Z. G. Nanoparticles of chlorin dimer with enhanced absorbance for photoacoustic imaging and phototherapy. Adv. Funct. Mater. 2018, 28, 1706507.

54

Hahn, G. M.; Braun, J.; Har-Kedar, I. Thermochemotherapy: Synergism between hyperthermia (42–43 degrees) and adriamycin (of bleomycin) in mammalian cell inactivation. Proc. Natl. Acad. Sci. USA 1975, 72, 937–940.

55

Tao, Y.; Ling, L.; Deng, Y. B.; Guo, Z. Q.; Zhang, G. B.; Ge, Z. S.; Ke, H. T.; Chen, H. B. Ultrastable near-infrared conjugated-polymer nanoparticles for dually photoactive tumor inhibition. Adv. Mater. 2017, 29, 1700487.

56

Zhang, J. F.; Yang, C. X.; Zhang, R.; Chen, R.; Zhang, Z. Y.; Zhang, W. J.; Peng, S. H.; Chen, X. Y.; Liu, G.; Hsu, C. S. et al. Biocompatible D-A semiconducting polymer nanoparticle with light-harvesting unit for highly effective photoacoustic imaging guided photothermal therapy. Adv. Funct. Mater. 2017, 27, 1605094.

57

Ryppa, C.; Mann-Steinberg, H.; Biniossek, M. L.; Satchi-Fainaro, R.; Kratz, F. In vitro and in vivo evaluation of a paclitaxel conjugate with the divalent peptide E-[c(RGDfK)2] that targets integrin αvβ3. Int. J. Pharm. 2009, 368, 89–97.

58

Rempel, S. A.; Ge, S. G.; Gutiérrez, J. A. SPARC: A potential diagnostic marker of invasive meningiomas. Clin. Cancer Res. 1999, 5, 237–241.

59

Cortes, J.; Saura, C. Nanoparticle albumin-bound (nab™)-paclitaxel: Improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur. J. Cancer Suppl. 2010, 8, 1–10.

60

Xiao, K.; Luo, J. T.; Fowler, W. L.; Li, Y. P.; Lee, J. S.; Xing, L.; Cheng, R. H.; Wang, L.; Lam, K. S. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials 2009, 30, 6006–6016.

File
12274_2019_2318_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 November 2018
Revised: 25 January 2019
Accepted: 27 January 2019
Published: 05 March 2019
Issue date: April 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51773197 and 51522307).

Return