Journal Home > Volume 12 , Issue 9

Electrocatalytic CO2 reduction to CO is a sustainable process for energy conversion. However, this process is still hindered by the diffusion-limited mass transfer, low electrical conductivity and catalytic activity. Therefore, new strategies for catalyst design should be adopted to solve these problems and improve the electrocatalytic performance for CO production. Herein, we report a multiscale carbon foam confining single iron atoms prepared with the assistant of SiO2 template. The pore-enriched environment at the macro-scale facilitates the diffusion of reactants and products. The graphene nanosheets at the nano-scale promote the charge transfer during the reaction. The single iron atoms confined in carbon matrix at the atomic-scale provide the active sites for electrocatalytic CO2 reduction to CO. The optimized catalyst achieves a CO Faradaic efficiency of 94.9% at a moderate potential of?0.5 V vs. RHE. Furthermore, the performance can be maintained over 60 hours due to the stable single iron atoms coordinated with four nitrogen atoms in the carbon matrix. This work provides a promising strategy to improve both the activity and stability of single atom catalysts for electrocatalytic CO2 reduction to CO.

File
12274_2019_2316_MOESM1_ESM.pdf (5.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 December 2018
Revised: 27 January 2019
Accepted: 27 January 2019
Published: 12 March 2019
Issue date: September 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support from the Ministry of Science and Technology of China (Nos. 2016YFA0204100 and 2016YFA0200200), the National Natural Science Foundation of China (Nos. 21573220 and 21802124), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC020), and the DNL Cooperation Fund, CAS (No. DNL180201). We thank staff at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facilities (SSRF) for assistance with the X-ray absorption spectroscopy measurements.

Return