Journal Home > Volume 12 , Issue 6

Luminescent metal nanoclusters (NCs) have recently emerged as a novel class of luminescent nanomaterials and hold significant potential in biomedicine owing to their ultrasmall (< 2 nm) size, excellent photostability, and good biocompatibility. The recent rapid advances in the synthesis and functionalization of luminescent metal NCs have enabled scientists to develop colorful nanomaterials and nanodevices for a wide range of biomedical applications. In this review, we summarize the characteristics and advantages of luminescence from metal NCs, and highlight their applications in biomedicine. We focus on the research in biomedical detection, bio-imaging, drug delivery, and therapy, especially for the advances in the last five years. Luminescent metal NCs display a series of unique superiorities in biomedical applications, and the recent achievements have brought a lot of benefits to the diagnosis and treatment of clinical diseases, especially for tumors and cancers. Finally, we put forward the main challenges that currently still hinder the basic science studies and the practical development of luminescent metal NCs in biomedical applications. Overall, we expect that luminescent metal NCs will play a much more important role in future biomedicine and clinical applications.


menu
Abstract
Full text
Outline
About this article

Luminescent metal nanoclusters for biomedical applications

Show Author's information Yu Su1Tiantian Xue1Yuxin Liu1Jinxia Qi1Rongchao Jin2( )Zhenkun Lin1( )
Center of Scientific Research,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University,Wenzhou,325035,China;
Department of Chemistry,Carnegie Mellon University,Pittsburgh, PA,15213,USA;

Abstract

Luminescent metal nanoclusters (NCs) have recently emerged as a novel class of luminescent nanomaterials and hold significant potential in biomedicine owing to their ultrasmall (< 2 nm) size, excellent photostability, and good biocompatibility. The recent rapid advances in the synthesis and functionalization of luminescent metal NCs have enabled scientists to develop colorful nanomaterials and nanodevices for a wide range of biomedical applications. In this review, we summarize the characteristics and advantages of luminescence from metal NCs, and highlight their applications in biomedicine. We focus on the research in biomedical detection, bio-imaging, drug delivery, and therapy, especially for the advances in the last five years. Luminescent metal NCs display a series of unique superiorities in biomedical applications, and the recent achievements have brought a lot of benefits to the diagnosis and treatment of clinical diseases, especially for tumors and cancers. Finally, we put forward the main challenges that currently still hinder the basic science studies and the practical development of luminescent metal NCs in biomedical applications. Overall, we expect that luminescent metal NCs will play a much more important role in future biomedicine and clinical applications.

Keywords: therapy, drug delivery, luminescence, metal nanoclusters, biomedicine, biomedical detection, bio-imaging

References(232)

1

Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer: Berlin, Heidelberg, 1995.

2

Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Holt, Rinehart and Winston: New York, 1976.

3

Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.

4

Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549-1565.

5

Aikens, C. M. Electronic structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2011, 2, 99-104.

6

Desireddy, A.; Conn, B. E.; Guo, J. S, ; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399-402.

7

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346-10413.

8

Jin, R. C. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2, 343-362.

9

Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401-418.

10

Lu, Y. Z.; Wei, W. T.; Chen, W. Copper nanoclusters: Synthesis, characterization and properties. Chin. Sci. Bull. 2012, 57, 41-47.

11

Xu, H. X.; Suslick, K. S. Water-soluble fluorescent silver nanoclusters. Adv. Mater. 2010, 22, 1078-1082.

12

Aiken Ⅲ, J. D.; Finke, R. G. A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A Chem. 1999, 145, 1-44.

13

Wilcoxon, J. P.; Abrams, B. L. Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 2006, 35, 1162-1194.

14

Díez, I.; Ras, R. H. A. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963-1970.

15

Jia, J. H.; Wang, Q. M. Intensely luminescent gold(I)-silver(I) cluster with hypercoordinated carbon. J. Am. Chem. Soc. 2009, 131, 16634-16635.

16

Jia, J. H.; Liang, J. X.; Lei, Z.; Cao, Z. X.; Wang, Q. M. A luminescent gold(I)-copper(I) cluster with unprecedented carbon-centered trigonal prismatic hexagold. Chem. Commun. 2011, 47, 4739-4741.

17

Lei, Z.; Pei, X. L.; Guan, Z. J.; Wang, Q. M. Full protection of intensely luminescent gold(I)-silver(I) cluster by phosphine ligands and inorganic anions. Angew. Chem., Int. Ed. 2017, 56, 7117-7120.

18

Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18]- nanocluster. Angew. Chem., Int. Ed. 2016, 128, 934-938.

19

Kang, X.; Xiong, L.; Wang, S. X.; Yu, H. Z.; Jin, S.; Song, Y. B.; Chen, T.; Zheng, L. W.; Pan, C. S.; Pei, Y. et al. Shape-controlled synthesis of trimetallic nanoclusters: Structure elucidation and properties investigation. Chem. —Eur. J. 2016, 22, 17145-17150.

20

Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 1989, 111, 321-335.

21

Song, X. R.; Goswami, N.; Yang, H. H.; Xie, J. P. Functionalization of metal nanoclusters for biomedical applications. Analyst 2016, 141, 3126-3140.

22

Petty, J. T.; Fan, C. Y.; Story, S. P.; Sengupta, B.; St. John Iyer, A.; Prudowsky, Z.; Dickson, R. M. DNA encapsulation of 10 silver atoms producing a bright, modulatable, near-infrared-emitting cluster. J. Phys. Chem. Lett. 2010, 1, 2524-2529.

23

Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.

24

Zhang, Q.; Yang, M. Y.; Zhu, Y.; Mao, C. B. Metallic nanoclusters for cancer imaging and therapy. Curr. Med. Chem. 2018, 25, 1379-1396.

25

Zhu, M. Z.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. C. Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 2008, 130, 1138-1139.

26

Kumar, S.; Jin, R. C. Water-soluble Au25(capt)18 nanoclusters: Synthesis, thermal stability, and optical properties. Nanoscale 2012, 4, 4222-4227.

27

Tvedte, L. M.; Ackerson, C. J. Size-focusing synthesis of gold nanoclusters with p-mercaptobenzoic acid. J. Phys. Chem. A 2014, 118, 8124-8128.

28

Wu, Z. K.; Suhan, J.; Jin, R. C. One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J. Mater. Chem. 2009, 19, 622-626.

29

Wu, Z. K.; MacDonald, M. A.; Chen, J.; Zhang, P.; Jin, R. C. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J. Am. Chem. Soc. 2011, 133, 9670-9673.

30

Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. C. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280-8281.

31

Qian, H. F.; Zhu, Y.; Jin, R. C. Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 2009, 3, 3795-3803.

32

Zeng, C. J.; Chen, Y. X.; Li, G.; Jin, R. C. Magic size Au64(S-c-C6H11)32 nanocluster protected by cyclohexanethiolate. Chem. Mater. 2014, 26, 2635-2641.

33

Liu, C.; Lin, J. Z.; Shi, Y. W.; Li, G. Efficient synthesis of Au99(SR)42 nanoclusters. Nanoscale 2015, 7, 5987-5990.

34

Qian, H. F.; Jin, R. C. Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60. Nano Lett. 2009, 9, 4083-4087.

35

Zeng, C. J.; Chen, Y. X.; Kirschbaum, K.; Lambright, K. J.; Jin, R. C. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 2016, 354, 1580-1584.

36

Qian, H. F.; Zhu, Y.; Jin, R. C. Atomically precise gold nanocrystal molecules with surface Plasmon resonance. Proc. Natl. Acad. Sci. USA 2012, 109, 696-700.

37

Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. [Ag25(SR)18]-: The "golden" silver nanoparticle. J. Am. Chem. Soc. 2015, 137, 11578-11581.

38

Nguyen, T. A. D.; Jones, Z. R.; Leto, D. F.; Wu, G.; Scott, S. L.; Hayton, T. W. Ligand-exchange-induced growth of an atomically precise Cu29 nanocluster from a smaller cluster. Chem. Mater. 2016, 28, 8385-8390.

39

Wan, X. K.; Cheng, X. L.; Tang, Q.; Han, Y. Z.; Hu, G. X.; Jiang, D. E.; Wang, Q. M. Atomically precise bimetallic Au19Cu30 nanocluster with an icosidodecahedral Cu30 shell and an alkynyl-Cu interface. J. Am. Chem. Soc. 2017, 139, 9451-9454.

40

Kang, X.; Wang, S. X.; Song, Y. B.; Jin, S.; Sun, G. D.; Yu, H. Z.; Zhu, M. Z. Bimetallic Au2Cu6 nanoclusters: Strong luminescence induced by the aggregation of copper(I) complexes with gold(0) species. Angew. Chem., Int. Ed. 2016, 55, 3611-3614.

41

Kumar, S.; Bolan, M. D.; Bigioni, T. P. Glutathione-stabilized magic-number silver cluster compounds. J. Am. Chem. Soc. 2010, 132, 13141-13143.

42

Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B. 1997, 101, 3706-3712.

43

Zhou, M.; Zeng, C. J.; Song, Y. B.; Padelford, J. W.; Wang, G. L.; Sfeir, M. Y.; Higaki, T.; Jin, R. C. On the non-metallicity of 2.2 nm Au246(SR)80 nanoclusters. Angew. Chem., Int. Ed. 2017, 56, 16257-16261.

44

Higaki, T.; Zhou, M.; Lambright, K. J.; Kirschbaum, K.; Sfeir, M. Y.; Jin, R. C. Sharp transition from nonmetallic Au246 to metallic Au279 with nascent surface Plasmon resonance. J. Am. Chem. Soc. 2018, 140, 5691-5695.

45

Liu, J. H.; Wang, A. Q.; Chi, Y. S.; Lin, H. P.; Mou, C. Y. Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation. J. Phys. Chem. B 2005, 109, 40-43.

46

Yamazoe, S.; Koyasu, K.; Tsukuda, T. Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 2014, 47, 816-824.

47

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Antimicrobial gold nanoclusters. ACS Nano 2017, 11, 6904-6910.

48

Zheng, J.; Zhou, C.; Yu, M. X.; Liu, J. B. Different sized luminescent gold nanoparticles. Nanoscale 2012, 4, 4073-4083.

49

Huang, T.; Murray, R. W. Visible luminescence of water-soluble monolayer-protected gold clusters. J. Phys. Chem. B 2001, 105, 12498-12502.

50

Huang, T.; Murray, R. W. Luminescence of tiopronin monolayer-protected silver clusters changes to that of gold clusters upon galvanic core metal exchange. J. Phys. Chem. B 2003, 107, 7434-7440.

51

Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883-5885.

52

Lu, Y. Z.; Chen, W. Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594-3623.

53

Zheng, J.; Petty, J. T.; Dickson, R. M. High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc. 2003, 125, 7780-7781.

54

Zheng, J.; Zhang, C. W.; Dickson, R. M. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett. 2004, 93, 077402.

55

Liu, X. F.; Li, C. H.; Xu, J. L.; Lv, J.; Zhu, M.; Guo, Y. B.; Cui, S.; Liu, H. B.; Wang, S.; Li, Y. L. Surfactant-free synthesis and functionalization of highly fluorescent gold quantum dots. J. Phys. Chem. C 2008, 112, 10778-10783.

56

Yang, X.; Shi, M. M.; Zhou, R. J.; Chen, X. Q.; Chen, H. Z. Blending of HAuCl4 and histidine in aqueous solution: A simple approach to the Au10 cluster. Nanoscale 2011, 3, 2596-2601.

57

Sun, C. J.; Yang, H.; Yuan, Y.; Tian, X.; Wang, L. M.; Guo, Y.; Xu, L.; Lei, J. L.; Gao, N.; Anderson, G. J. et al. Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. J. Am. Chem. Soc. 2011, 133, 8617-8624.

58

Huang, X.; Li, B. Y.; Li, L.; Zhang, H.; Majeed, I.; Hussain, I.; Tan, B. Facile preparation of highly blue fluorescent metal nanoclusters in organic media. J. Phys. Chem. C 2012, 116, 448-455.

59

Shang, L.; Dörlich, R. M.; Brandholt, S.; Schneider, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 2011, 3, 2009-2014.

60

Wang, H. H.; Lin, C. A. J.; Lee, C. H.; Lin, Y. C.; Tseng, Y. M.; Hsieh, C. L.; Chen, C. H.; Tsai, C. H.; Hsieh, C. T.; Shen, J. L. et al. Fluorescent gold nanoclusters as a biocompatible marker for in vitro and in vivo tracking of endothelial cells. ACS Nano 2011, 5, 4337-4344.

61

Zhou, C.; Long, M.; Qin, Y. P.; Sun, X. K.; Zheng, J. Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem., Int. Ed. 2011, 50, 3168-3172.

62

Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R. Ph-dependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv. Funct. Mater. 2011, 21, 3508-3515.

63

Shang, L.; Yang, L. X.; Stockmar, F.; Popescu, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+ in living cells using fluorescence imaging. Nanoscale 2012, 4, 4155-4160.

64

Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G.; Lee, J. Y.; Xie, J. P. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011, 5, 8800-8808.

65

Wang, Z. J.; Wu, L. N.; Cai, W.; Jiang, Z. H. Luminescent Au11 nanocluster superlattices with high thermal stability. J. Mater. Chem. 2012, 22, 3632-3636.

66

Wang, Z. J.; Cai, W.; Sui, J. H. Blue luminescence emitted from monodisperse thiolate-capped Au11 clusters. Chem. Phys. Chem. 2009, 10, 2012-2015.

67

Bakr, O. M.; Amendola, V.; Aikens, C. M.; Wenseleers, W.; Li, R.; Dal Negro, L.; Schatz, G. C.; Stellacci, F. Silver nanoparticles with broad multiband linear optical absorption. Angew. Chem., Int. Ed. 2009, 48, 5921-5926.

68

Kim, Y.; Seff, K. Structure of a very small piece of silver metal. The octahedral silver (Ag6) molecule. Two crystal structures of partially decomposed vacuum-dehydrated fully Ag+-exchanged zeolite A. J. Am. Chem. Soc. 1977, 99, 7055-7057.

69

Zheng, J.; Dickson, R. M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc. 2002, 124, 13982-13983.

70

Shang, L.; Dong, S. J. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun. 2008, 1088-1090.

71

Choi, S.; Dickson, R. M.; Yu, J. H. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867-1891.

72

O'Neill, P. R.; Young, K.; Schiffels, D.; Fygenson, D. K. Few-atom fluorescent silver clusters assemble at programmed sites on DNA nanotubes. Nano Lett. 2012, 12, 5464-5469.

73

Muhammed, M. A. H.; Aldeek, F.; Palui, G.; Trapiella-Alfonso, L.; Mattoussi, H. Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing. ACS Nano 2012, 6, 8950-8961.

74

Zhang, H.; Huang, X.; Li, L.; Zhang, G. W.; Hussain, I.; Li, Z.; Tan, B. Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chem. Commun. 2012, 48, 567-569.

75

Yang, X.; Gan, L. F.; Han, L.; Wang, E. K.; Wang, J. High-yield synthesis of silver nanoclusters protected by DNA monomers and DFT prediction of their photoluminescence properties. Angew. Chem., Int. Ed. 2013, 52, 2022-2026.

76

Kawasaki, H.; Kosaka, Y.; Myoujin, Y.; Narushima, T.; Yonezawa, T.; Arakawa, R. Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem. Commun. 2011, 47, 7740-7742.

77

Chen, J.H.; Liu, J.; Fang, Z. Y.; Zeng, L. W. Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem. Commun. 2012, 48, 1057-1059.

78

Kawasaki, H.; Yamamoto, H.; Fujimori, H.; Arakawa, R.; Inada, M.; Iwasaki, Y. Surfactant-free solution synthesis of fluorescent platinum subnanoclusters. Chem. Commun. 2010, 46, 3759-3761.

79

Tanaka, S. I.; Miyazaki, J.; Tiwari, D. K.; Jin, T.; Inouye, Y. Fluorescent platinum nanoclusters: Synthesis, purification, characterization, and application to bioimaging. Angew. Chem., Int. Ed. 2011, 50, 431-435.

80

Sun, H. T.; Matsushita, Y.; Sakka, Y.; Shirahata, N.; Tanaka, M.; Katsuya, Y.; Gao, H.; Kobayashi, K. Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y. J. Am. Chem. Soc. 2012, 134, 2918-2921.

81

Sun, H. T.; Sakka, Y.; Gao, H.; Miwa, Y.; Fujii, M.; Shirahata, N.; Bai, Z. H.; Li, J. G. Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal. J. Mater. Chem. 2011, 21, 4060-4063.

82

Sun, H. T.; Sakka, Y.; Fujii, M.; Shirahata, N.; Gao, H. Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth. Opt. Lett. 2011, 36, 100-102.

83

Sun, H. T.; Sakka, Y.; Shirahata, N.; Gao, H.; Yonezawa, T. Experimental and theoretical studies of photoluminescence from Bi82+ and Bi53+ stabilized by[AlCl4]- in molecular crystals. J. Mater. Chem. 2012, 22, 12837-12841.

84

Sun, H. T.; Xu, B. B.; Yonezawa, T.; Sakka, Y.; Shirahata, N.; Fujii, M.; Qiu, J. R.; Gao, H. Photoluminescence from Bi5(GaCl4)3 molecular crystal. Dalton Trans. 2012, 41, 11055-11061.

85

Sun, H. T.; Yonezawa, T.; Gillett-Kunnath, M. M.; Sakka, Y.; Shirahata, N.; Rong Gui, S. C.; Fujii, M.; Sevov, S. C. Ultra-broad near-infrared photoluminescence from crystalline (K-crypt)2Bi2 containing[Bi2]2- dimers. J. Mater. Chem. 2012, 22, 20175-20178.

86

Grasset, F.; Molard, Y.; Cordier, S.; Dorson, F.; Mortier, M.; Perrin, C.; Guilloux-Viry, M.; Sasaki, T.; Haneda, H. When "metal atom clusters" meet zno nanocrystals: A ((n-C4H9)4N)2Mo6Br14@ZnO hybrid. Adv. Mater. 2008, 20, 1710-1715.

87

Aubert, T.; Nerambourg, N.; Saito, N.; Haneda, H.; Ohashi, N.; Mortier, M.; Cordier, S.; Grasset, F. Tunable visible emission of luminescent hybrid nanoparticles incorporating two complementary luminophores: ZnO nanocrystals and[Mo6Br14]2- nanosized cluster units. Part. Part. Syst. Char. 2013, 30, 90-95.

88

Molard, Y.; Labbé, C.; Cardin, J.; Cordier, S. Sensitization of Er3+ infrared photoluminescence embedded in a hybrid organic-inorganic copolymer containing octahedral molybdenum clusters. Adv. Funct. Mater. 2013, 23, 4821-4825.

89

Udayabhaskararao, T.; Sun, Y.; Goswami, N.; Pal, S. K.; Balasubramanian, K.; Pradeep, T. Ag7Au6: A 13-atom alloy quantum cluster. Angew. Chem., Int. Ed. 2012, 51, 2155-2159.

90

Mohanty, J. S.; Xavier, P. L.; Chaudhari, K.; Bootharaju, M. S.; Goswami, N.; Pal, S. K.; Pradeep, T. Luminescent, bimetallic auag alloy quantum clusters in protein templates. Nanoscale 2012, 4, 4255-4262.

91

Andolina, C. M.; Dewar, A. C.; Smith, A. M.; Marbella, L. E.; Hartmann, M. J.; Millstone, J. E. Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission. J. Am. Chem. Soc. 2013, 135, 5266-5269.

92

Xu, H. X.; Suslick, K. S. Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 2010, 4, 3209-3214.

93

Wu, Z. K.; Jin, R. C. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568-2573.

94

Chang, H. Y.; Chang, H. T.; Hung, Y. L.; Hsiung, T. M.; Lin, Y. W.; Huang, C. C. Ligand effect on the luminescence of gold nanodots and its application for detection of total mercury ions in biological samples. RSC Adv. 2013, 3, 4588-4597.

95

Li, G.; Lei, Z.; Wang, Q. M. Luminescent molecular Ag-S nanocluster[Ag62S13(SBut)32](BF4)4. J. Am. Chem. Soc. 2010, 132, 17678-17679.

96

Jin, S.; Wang, S. X.; Song, Y. B.; Zhou, M.; Zhong, J.; Zhang, J.; Xia, A. D.; Pei, Y.; Chen, M.; Li, P. et al. Crystal structure and optical properties of the[Ag62S12(SBut)32]2+ nanocluster with a complete face-centered cubic kernel. J. Am. Chem. Soc. 2014, 136, 15559-15565.

97

Duan, H. W.; Nie, S. M. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 2007, 129, 2412-2413.

98

Jin, R. C.; Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano Res. 2014, 7, 285-300.

99

Yao, C. H.; Lin, Y. J.; Yuan, J. Y.; Liao, L. W.; Zhu, M.; Weng, L. H.; Yang, J. L.; Wu, Z. K. Mono-cadmium vs mono-mercury doping of Au25 nanoclusters. J. Am. Chem. Soc. 2015, 137, 15350-15353.

100

Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217-224.

101

Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763-775.

102

Chen, N.; He, Y.; Su, Y. Y.; Li, X. M.; Huang, Q.; Wang, H. F.; Zhang, X. Z.; Tai, R. Z.; Fan, C. H. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012, 33, 1238-1244.

103

Polavarapu, L.; Manna, M.; Xu, Q. H. Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging. Nanoscale 2011, 3, 429-434.

104

Wu, X.; He, X. X.; Wang, K. M.; Xie, C.; Zhou, B.; Qing, Z. H. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2010, 2, 2244-2249.

105

Lin, C. A. J.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. I. et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano 2009, 3, 395-401.

106

Koo, H.; Huh, M. S.; Ryu, J. H.; Lee, D. E.; Sun, I. C.; Choi, K.; Kim, K.; Kwon, I. C. Nanoprobes for biomedical imaging in living systems. Nano Today 2011, 6, 204-220.

107

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538-544.

108

Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Itty Ipe, B.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165-1170.

109

Zhang, N.; Si, Y. M.; Sun, Z. Z.; Li, S.; Li, S. Y.; Lin, Y. H.; Wang, H. Lab-on-a-drop: Biocompatible fluorescent nanoprobes of gold nanoclusters for label-free evaluation of phosphorylation-induced inhibition of acetylcholinesterase activity towards the ultrasensitive detection of pesticide residues. Analyst 2014, 139, 4620-4628.

110

Qiao, J.; Mu, X. Y.; Qi, L. J.; Deng, J. Q.; Mao, L. Q. Folic acid-functionalized fluorescent gold nanoclusters with polymers as linkers for cancer cell imaging. Chem. Commun. 2013, 49, 8030-8032.

111

Yang, S.; Jiang, Z. Y.; Chen, Z. Z.; Tong, L. L.; Lu, J.; Wang, J. H. Bovine serum albumin-stabilized gold nanoclusters as a fluorescent probe for determination of ferrous ion in cerebrospinal fluids via the Fenton reaction. Microchim. Acta 2015, 182, 1911-1916.

112

Cao, X. L.; Lian, L. L.; Li, H. W.; Wu, Y. Q.; Lou, D. W. A fluorescence probe based on biomolecule-stabilized gold nanoclusters for the detection of pazufloxacin mesilate. Anal. Sci. 2014, 30, 817-822.

113

Oh, E.; Fatemi, F. K.; Currie, M.; Delehanty, J. B.; Pons, T.; Fragola, A.; Lévêque-Fort, S.; Goswami, R.; Susumu, K.; Huston, A. L. et al. Pegylated luminescent gold nanoclusters: Synthesis, characterization, bioconjugation, and application to one- and two-photon cellular imaging. Part. Part. Syst. Char. 2013, 30, 453-466.

114

Jin, L. H.; Shang, L.; Guo, S. J.; Fang, Y. X.; Wen, D.; Wang, L.; Yin, J. Y.; Dong, S. J. Biomolecule-stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens. Bioelectron. 2011, 26, 1965-1969.

115

Xia, X. D.; Long, Y. F.; Wang, J. X. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Anal. Chim. Acta 2013, 772, 81-86.

116

Deng, H. H.; Wu, G. W.; He, D.; Peng, H. P.; Liu, A. L.; Xia, X. H.; Chen, W. Fenton reaction-mediated fluorescence quenching of N- acetyl-L-cysteine-protected gold nanoclusters: Analytical applications of hydrogen peroxide, glucose, and catalase detection. Analyst 2015, 140, 7650-7656.

117

Guo, S.; Fang, Q. H.; Li, Z. M.; Zhang, J.; Zhang, J. Y.; Li, G. Efficient base-free direct oxidation of glucose to gluconic acid over TiO2- supported gold clusters. Nanoscale 2019, 11, 1326-1334.

118

Zhu, Y.; Hu, X. C.; Shi, S.; Gao, R. R.; Huang, H. L.; Zhu, Y. Y.; Lv, X. Y.; Yao, T. M. Ultrasensitive and universal fluorescent aptasensor for the detection of biomolecules (ATP, adenosine and thrombin) based on DNA/Ag nanoclusters fluorescence light-up system. Biosens. Bioelectron. 2016, 79, 205-212.

119

Ma, J. L.; Yin, B. C.; Ye, B. C. A versatile proximity-dependent probe based on light-up DNA-scaffolded silver nanoclusters. Analyst 2016, 141, 1301-1306.

120

Tao, Y.; Lin, Y. H.; Ren, J. S.; Qu, X. G. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens. Bioelectron. 2013, 42, 41-46.

121

Guo, X. R.; Wu, F. Y.; Ni, Y. N.; Kokot, S. Synthesizing a nano-composite of BSA-capped Au nanoclusters/graphitic carbon nitride nanosheets as a new fluorescent probe for dopamine detection. Anal. Chim. Acta 2016, 942, 112-120.

122

Wang, J.; Chang, Y.; Wu, W. B.; Zhang, P.; Lie, S. Q.; Huang, C. Z. Label-free and selective sensing of uric acid with gold nanoclusters as optical probe. Talanta 2016, 152, 314-320.

123

Yang, D. Q.; Luo, M. C.; Di, J. W.; Tu, Y. F.; Yan, J. L. Gold nanocluster- based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid. Mikrochim. Acta 2018, 185, 305.

124

Peng, H. P.; Jian, M. L.; Huang, Z. N.; Wang, W. J.; Deng, H. H.; Wu, W. H.; Liu, A. L.; Xia, X. H.; Chen, W. Facile electrochemiluminescence sensing platform based on high-quantum-yield gold nanocluster probe for ultrasensitive glutathione detection. Biosens. Bioelectron. 2018, 105, 71-76.

125

Zhang, J. R.; Wang, Z. L.; Qu, F.; Luo, H. Q.; Li, N. B. Polyethylenimine- capped silver nanoclusters as a fluorescence probe for highly sensitive detection of folic acid through a two-step electron-transfer process. J. Agric. Food Chem. 2014, 62, 6592-6599.

126

Chen, Y. L.; Ding, L.; Ju, H. X. In situ tracing of cell surface sialic acid by chemoselective recognition to unload gold nanocluster probe from density tunable dendrimeric array. Chem. Commun. 2013, 49, 862-864.

127

He, Y.; Wang, X.; Zhu, J. J.; Zhong, S. H.; Song, G. W. Ni2+-modified gold nanoclusters for fluorescence turn-on detection of histidine in biological fluids. Analyst 2012, 137, 4005-4009.

128

Zhou, Y.; Zhou, T. S.; Zhang, M.; Shi, G. Y. A DNA-scaffolded silver nanocluster/Cu2+ ensemble as a turn-on fluorescent probe for histidine. Analyst 2014, 139, 3122-3126.

129

Zheng, X. Y.; Yao, T. M.; Zhu, Y.; Shi, S. Cu2+ modulated silver nanoclusters as an on-off-on fluorescence probe for the selective detection of L-histidine. Biosens. Bioelectron. 2015, 66, 103-108.

130

Liu, T.; Su, Y. Y.; Song, H. J.; Lv, Y. Microwave-assisted green synthesis of ultrasmall fluorescent water-soluble silver nanoclusters and its application in chiral recognition of amino acids. Analyst 2013, 138, 6558-6564.

131

Zhu, J. J.; Song, X. C.; Gao, L.; Li, Z. M.; Liu, Z.; Ding, S.; Zou, S. B.; He, Y. A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters. Biosens. Bioelectron. 2014, 53, 71-75.

132

Yu, H.; Liu, Y.; Wang, J. M.; Liang, Q.; Liu, H.; Xu, J.; Shao, S. J. A gold nanocluster-based ratiometric fluorescent probe for cysteine and homocysteine detection in living cells. New J. Chem. 2017, 41, 4416-4423.

133

Feng, T.; Chen, Y.; Feng, B. B.; Yan, J. L.; Di, J. W. Fluorescence red-shift of gold-silver nanoclusters upon interaction with cysteine and its application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 97-103.

134

Zhang, J.; Sajid, M.; Na, N.; Huang, L. Y.; He, D. C.; Ouyang, J. The application of Au nanoclusters in the fluorescence imaging of human serum proteins after native page: Enhancing detection by low-temperature plasma treatment. Biosens. Bioelectron. 2012, 35, 313-318.

135

Alonso, M. C.; Trapiella-Alfonso, L.; Fernández, J. M. C.; Pereiro, R.; Sanz-Medel, A. Functionalized gold nanoclusters as fluorescent labels for immunoassays: Application to human serum immunoglobulin E determination. Biosens. Bioelectron. 2016, 77, 1055-1061.

136

Yang, D. Q.; Meng, H. J.; Tu, Y. F.; Yan, J. L. A nanocluster-based fluorescent sensor for sensitive hemoglobin detection. Talanta 2017, 170, 233-237.

137

Antunes, P.; Watterson, D.; Parmvi, M.; Burger, R.; Boisen, A.; Young, P.; Cooper, M. A.; Hansen, M. F.; Ranzoni, A.; Donolato, M. Quantification of ns1 dengue biomarker in serum via optomagnetic nanocluster detection. Sci. Rep. 2015, 5, 16145.

138

Quan, H.; Zuo, C. H.; Li, T.; Liu, Y. T.; Li, M. Y.; Zhong, M.; Zhang, Y. Y.; Qi, H. Z.; Yang, M. H. Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe. Electrochim. Acta 2015, 176, 893-897.

139

Li, L. H.; Feng, D. X.; Zhao, J. Q.; Guo, Z. L.; Zhang, Y. Z. Simultaneous fluoroimmunoassay of two tumor markers based on CdTe quantum dots and gold nanocluster coated-silica nanospheres as labels. RSC Adv. 2015, 5, 105992-105998.

140

Yoshimoto, J.; Sangsuwan, A.; Osaka, I.; Yamashita, K.; Iwasaki, Y.; Inada, M.; Arakawa, R.; Kawasaki, H. Optical properties of 2-methacryloyloxyethyl phosphorylcholine-protected Au4 nanoclusters and their fluorescence sensing of C-reactive protein. J. Phys. Chem. C 2015, 119, 14319-14325.

141

Song, W.; Wang, Y.; Liang, R. P.; Zhang, L.; Qiu, J. D. Label-free fluorescence assay for protein kinase based on peptide biomineralized gold nanoclusters as signal sensing probe. Biosens. Bioelectron. 2015, 64, 234-240.

142

Liu, Q.; Na, W. D.; Wang, L.; Su, X. G. Gold nanocluster-based fluorescent assay for label-free detection of protein kinase and its inhibitors. Microchim. Acta. 2017, 184, 3381-3387.

143

Sun, A. L.; Jia, F. C.; Zhang, Y. F.; Wang, X. N. Gold nanocluster- encapsulated glucoamylase as a biolabel for sensitive detection of thrombin with glucometer readout. Microchim. Acta 2015, 182, 1169-1175.

144

Wang, L. H.; Ma, K. K.; Zhang, Y. D. Label-free fluorometric detection of S1 nuclease activity by using polycytosine oligonucleotide-templated silver nanoclusters. Anal. Biochem. 2015, 468, 34-38.

145

Qian, Y. X.; Zhang, Y. D.; Lu, L.; Cai, Y. N. A label-free DNA-templated silver nanocluster probe for fluorescence on-off detection of endonuclease activity and inhibition. Biosens. Bioelectron. 2014, 51, 408-412.

146

Zhang, Y. D.; Cai, Y. N.; Qi, Z. L.; Lu, L.; Qian, Y. X. DNA-templated silver nanoclusters for fluorescence turn-on assay of acetylcholinesterase activity. Anal. Chem. 2013, 85, 8455-8461.

147

Liu, R.; Wu, Z. Y.; Yang, Y. L.; Liao, S. Z.; Yu, R. Q. Application of gold-silver nanocluster based fluorescent sensors for determination of acetylcholinesterase activity and its inhibitor. Mater. Res. Express 2018, 5, 065027.

148

Ma, J. L.; Yin, B. C.; Wu, X.; Ye, B. C. Copper-mediated DNA-scaffolded silver nanocluster on-off switch for detection of pyrophosphate and alkaline phosphatase. Anal. Chem. 2016, 88, 9219-9225.

149

Liu, W. T.; Lai, H.; Huang, R.; Zhao, C. T.; Wang, Y. M.; Weng, X. C.; Zhou, X. DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpin-shaped DNA probe with 5'-C-rich/g-rich-3' tails. Biosens. Bioelectron. 2015, 68, 736-740.

150

Nguyen, P. D.; Cong, V. T.; Baek, C.; Min, J. Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9. Biosens. Bioelectron. 2017, 89, 666-672.

151

Hu, L. Z.; Han, S.; Parveen, S.; Yuan, Y. L.; Zhang, L.; Xu, G. B. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens. Bioelectron. 2012, 32, 297-299.

152

Zhuo, C. X.; Wang, L. H.; Feng, J. J.; Zhang, Y. D. Label-free fluorescent detection of trypsin activity based on DNA-stabilized silver nanocluster- peptide conjugates. Sensors 2016, 16, 1477.

153

Wang, L.; Guo, T.; Lu, Q.; Yan, X. L.; Zhong, D. X.; Zhang, Z. P.; Ni, Y. F.; Han, Y.; Cui, D. X.; Li, X. F. et al. Sea-urchin-like Au nanocluster with surface-enhanced Raman scattering in detecting epidermal growth factor receptor (EGFR) mutation status of malignant pleural effusion. ACS Appl. Mater. Interfaces 2015, 7, 359-369.

154

Mousavi, M. F.; Mirsian, S.; Noori, A.; Ilkhani, H.; Sarparast, M.; Moradi, N.; Bathaie, S. Z.; Mehrgardi, M. A. BSA-templated Pb nanocluster as a biocompatible signaling probe for electrochemical EGFR immunosensing. Electroanalysis 2017, 29, 861-872.

155

Wang, G. F.; Zhu, Y. H.; Chen, L.; Zhang, X. J. Photoinduced electron transfer (PET) based label-free aptasensor for platelet-derived growth factor-BB and its logic gate application. Biosens. Bioelectron. 2015, 63, 552-557.

156

Chen, X.; Baker, G. A. Cholesterol determination using protein-templated fluorescent gold nanocluster probes. Analyst 2013, 138, 7299-7302.

157

Chang, H. C.; Ho, J. A. Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal. Chem. 2015, 87, 10362-10367.

158

Hassanzadeh, J.; Khataee, A.; Eskandari, H. Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS2 nanosheets for sensitive detection of cholesterol. Sens. Actuators. B Chem. 2018, 259, 402-410.

159

Li, Z. Y.; Wu, Y. T.; Tseng, W. L. UV-light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: Application to ratiometric fluorescent sensing of nucleic acids. ACS Appl. Mater. Interfaces 2015, 7, 23708-23716.

160

Zhang, X. X.; Jin, Y.; Li, B. X. Copper nanocluster as a fluorescent indicator for label-free and sensitive detection of DNA hybridization assisted with a cascade isothermal exponential amplification reaction. New J. Chem. 2018, 42, 5178-5184.

161

Chen, J.; Chen, Q.; Gao, C. J.; Zhang, M. L.; Qin, B.; Qiu, H. D. A SiO2 NP-DNA/silver nanocluster sandwich structure-enhanced fluorescence polarization biosensor for amplified detection of hepatitis B virus DNA. J. Mater. Chem. B 2015, 3, 964-967.

162

Shah, P.; Choi, S. W.; Kim, H. J.; Cho, S. K.; Thulstrup, P. W.; Bjerrum, M. J.; Bhang, Y. J.; Ahn, J. C.; Yang, S. W. DNA/RNA chimera templates improve the emission intensity and target the accessibility of silver nanocluster-based sensors for human microRNA detection. Analyst 2015, 140, 3422-3430.

163

Zhang, L. B.; Zhu, J. B.; Zhou, Z. X.; Guo, S. J.; Li, J.; Dong, S. J.; Wang, E. K. A new approach to light up DNA/Ag nanocluster-based beacons for bioanalysis. Chem. Sci. 2013, 4, 4004-4010.

164

Zhou, W. J.; Zhu, J. B.; Fan, D. Q.; Teng, Y. Q.; Zhu, X. Q.; Dong, S. J. A multicolor chameleon DNA-templated silver nanocluster and its application for ratiometric fluorescence target detection with exponential signal response. Adv. Funct. Mater. 2017, 27, 1704092.

165

Ge, L.; Sun, X. M.; Hong, Q.; Li, F. Ratiometric nanocluster beacon: A label-free and sensitive fluorescent DNA detection platform. ACS Appl. Mater. Interfaces 2017, 9, 13102-13110.

166

Yin, J. J.; He, X. X.; Wang, K. M.; Xu, F. Z.; Shangguan, J.; He, D. G.; Shi, H. Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization. Anal. Chem. 2013, 85, 12011-12019.

167

Zhu, R.; Luo, X. Y.; Deng, L.; Lei, C. Y.; Huang, Y.; Nie, Z.; Yao, S. Z. An enzymatic polymerization-activated silver nanocluster probe for in situ apoptosis assay. Analyst 2018, 143, 2908-2914.

168

Cheng, D.; Yu, M. Q.; Fu, F.; Han, W. Y.; Li, G.; Xie, J. P.; Song, Y.; Swihart, M. T.; Song, E. Q. Dual recognition strategy for specific and sensitive detection of bacteria using aptamer-coated magnetic beads and antibiotic-capped gold nanoclusters. Anal. Chem. 2016, 88, 820-825.

169

Yan, R.; Shou, Z. X.; Chen, J.; Wu, H.; Zhao, Y.; Qiu, L.; Jiang, P. J.; Mou, X. Z.; Wang, J. H.; Li, Y. Q. On-off-on gold nanocluster-based fluorescent probe for rapid Escherichia coli differentiation, detection and bactericide screening. ACS Sustainable Chem. Eng. 2018, 6, 4504-4509.

170

Lin, X. D.; Liu, Y. Q.; Deng, J. K.; Lyu, Y. L.; Qian, P. C.; Li, Y. F.; Wang, S. Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes. Chem. Sci. 2018, 9, 1774-1781.

171

Sun, S. H.; Ning, X. H.; Zhang, G.; Wang, Y. C.; Peng, C. Q.; Zheng, J. Dimerization of organic dyes on luminescent gold nanoparticles for ratiometric pH sensing. Angew. Chem., Int. Ed. 2016, 55, 2421-2424.

172

Ding, C. Q.; Tian, Y. Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens. Bioelectron. 2015, 65, 183-190.

173

Xiong, H. Y.; Zheng, H. L.; Wang, W.; Liang, J. C.; Wen, W.; Zhang, X. H.; Wang, S. F. A convenient purification method for silver nanoclusters and its applications in fluorescent pH sensors for bacterial monitoring. Biosens. Bioelectron. 2016, 86, 164-168.

174

Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U. Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem., Int. Ed. 2013, 52, 11154-11157.

175

Zhou, W. J.; Zhu, J. B.; Teng, Y.; Du, B. J.; Han, X.; Dong, S. J. Novel dual fluorescence temperature-sensitive chameleon DNA-templated silver nanocluster pair for intracellular thermometry. Nano Res. 2018, 11, 2012-2023.

176

Wu, Y. T.; Shanmugam, C.; Tseng, W. B.; Hiseh, M. M.; Tseng, W. L. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates. Nanoscale 2016, 8, 11210-11216.

177

Yang, L. X.; Shang, L.; Nienhaus, G. U. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale 2013, 5, 1537-1543.

178

Wang, X. Y.; Xia, J. H.; Wang, C.; Liu, L.; Zhu, S. X.; Feng, W.; Li, L. D. Preparation of novel fluorescent nanocomposites based on Au nanoclusters and their application in targeted detection of cancer cells. ACS Appl. Mater. Interfaces 2017, 9, 44856-44863.

179

Nebu, J.; Anjali Devi, J. S.; Aparna, R. S.; Abha, K.; Sony, G. Erlotinib conjugated gold nanocluster enveloped magnetic iron oxide nanoparticles—A targeted probe for imaging pancreatic cancer cells. Sensor. Actuat. B Chem. 2018, 257, 1035-1043.

180

Bian, P. P.; Zhou, J.; Liu, Y. Y.; Ma, Z. F. One-step fabrication of intense red fluorescent gold nanoclusters and their application in cancer cell imaging. Nanoscale 2013, 5, 6161-6166.

181

Zhang, W. S.; Lin, D. M.; Wang, H. X.; Li, J. F.; Nienhaus, G. U.; Su, Z. Q.; Wei, G.; Shang, L. Supramolecular self-assembly bioinspired synthesis of luminescent gold nanocluster-embedded peptide nanofibers for temperature sensing and cellular imaging. Bioconjugate Chem. 2017, 28, 2224-2229.

182

Chattoraj, S.; Bhattacharyya, K. Fluorescent gold nanocluster inside a live breast cell: Etching and higher uptake in cancer cell. J. Phys. Chem. C. 2014, 118, 22339-22346.

183

Li, J. J.; Zhong, X. Q.; Cheng, F. F.; Zhang, J. R.; Jiang, L. P.; Zhu, J. J. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell- type-specific imaging. Anal. Chem. 2012, 84, 4140-4146.

184

Li, J. J.; You, J.; Dai, Y.; Shi, M. L.; Han, C. P.; Xu, K. Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging. Anal. Chem. 2014, 86, 11306-11311.

185

Arora, N.; Gavya, S. L.; Ghosh, S. S. Multi-facet implications of PEGylated lysozyme stabilized-silver nanoclusters loaded recombinant PTEN cargo in cancer theranostics. Biotechnol. Bioeng. 2018, 115, 1116-1127.

186

Zhang, X. R.; Chen, F. T.; Song, X. J.; He, P.; Zhang, S. S. Proximity ligation detection of lectin Concanavalin A and fluorescence imaging cancer cells using carbohydrate functionalized DNA-silver nanocluster probes. Biosens. Bioelectron. 2018, 104, 27-31.

187

Jiang, H.; Xu, G.; Sun, Y. M.; Zheng, W. W.; Zhu, X. X.; Wang, B. J.; Zhang, X. J.; Wang, G. F. A "turn-on" silver nanocluster based fluorescent sensor for folate receptor detection and cancer cell imaging under visual analysis. Chem. Commun. 2015, 51, 11810-11813.

188

Zhu, J. B.; Zhang, L. B.; Teng, Y.; Lou, B. H.; Jia, X. F.; Gu, X. X.; Wang, E. K. G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging. Nanoscale 2015, 7, 13224-13229.

189

Mu, W. Y.; Yang, R.; Robertson, A.; Chen, Q. Y. A near-infrared BSA coated DNA-AgNCs for cellular imaging. Colloid. Surf. B Biointerfaces 2018, 162, 427-431.

190

Vankayala, R.; Gollavelli, G.; Mandal, B. K. Highly fluorescent and biocompatible iridium nanoclusters for cellular imaging. J. Mater. Sci. Mater. Med. 2013, 24, 1993-2000.

191

Ge, W.; Zhang, Y. Y.; Ye, J.; Chen, D. H.; Rehman, F. U.; Li, Q. W.; Chen, Y.; Jiang, H.; Wang, X. M. Facile synthesis of fluorescent Au/Ce nanoclusters for high-sensitive bioimaging. J. Nanobiotechnol. 2015, 13, 8.

192

Chen, H. Y.; Li, B. W.; Wang, C.; Zhang, X.; Cheng, Z. Q.; Dai, X.; Zhu, R.; Gu, Y. Q. Characterization of a fluorescence probe based on gold nanoclusters for cell and animal imaging. Nanotechnology 2013, 24, 055704.

193

Li, Z.; Peng, H. B.; Liu, J. L.; Tian, Y.; Yang, W. L.; Yao, J. R.; Shao, Z. Z.; Chen, X. Plant protein-directed synthesis of luminescent gold nanocluster hybrids for tumor imaging. ACS Appl. Mater. Interfaces 2018, 10, 83-90.

194

Liu, J. M.; Chen, J. T.; Yan, X. P. Near infrared fluorescent trypsin stabilized gold nanoclusters as surface Plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. Anal. Chem. 2013, 85, 3238-3245.

195

Wu, X. T.; Li, L.; Zhang, L. Y.; Wang, T. T.; Wang, C. G.; Su, Z. M. Multifunctional spherical gold nanocluster aggregate@polyacrylic acid@mesoporous silica nanoparticles for combined cancer dual-modal imaging and chemo-therapy. J. Mater. Chem. B. 2015, 3, 2421-2425.

196

Nair, L. V.; Nair, R. V.; Shenoy, S. J.; Thekkuveettil, A.; Jayasree, R. S. Blood brain barrier permeable gold nanocluster for targeted brain imaging and therapy: An in vitro and in vivo study. J. Mater. Chem. B. 2017, 5, 8314-8321.

197

Yu, M. X.; Zhou, J. C.; Du, B. J.; Ning, X. H.; Authement, C.; Gandee, L.; Kapur, P.; Hsieh, J. T.; Zheng, J. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 2787-2791.

198

Luo, Z. T.; Zheng, K. Y.; Xie, J. P. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 2014, 50, 5143-5155.

199

Khandelia, R.; Bhandari, S.; Pan, U. N.; Ghosh, S. S.; Chattopadhyay, A. Gold nanocluster embedded albumin nanoparticles for two-photon imaging of cancer cells accompanying drug delivery. Small 2015, 11, 4075-4081.

200

Goswami, U.; Dutta, A.; Raza, A.; Kandimalla, R.; Kalita, S.; Ghosh, S. S.; Chattopadhyay, A. Transferrin-copper nanocluster-doxorubicin nanoparticles as targeted theranostic cancer nanodrug. ACS Appl. Mater. Interfaces 2018, 10, 3282-3294.

201

Zhang, X. D.; Wu, F. G.; Liu, P. D.; Wang, H. Y.; Gu, N.; Chen, Z. Synthesis of ultrastable and multifunctional gold nanoclusters with enhanced fluorescence and potential anticancer drug delivery application. J. Colloid Interface Sci. 2015, 455, 6-15.

202

Zhao, T. T.; Chen, Q. Y.; Yang, H. Spectroscopic study on the formation of DNA-Ag clusters and its application in temperature sensitive vehicles of DOX. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 66-69.

203

Li, L.; Zhang, L. Y.; Wang, T. T.; Wu, X. T.; Ren, H.; Wang, C. G.; Su, Z. M. Facile and scalable synthesis of novel spherical Au nanocluster assemblies@polyacrylic acid/calcium phosphate nanoparticles for dual-modal imaging-guided cancer chemotherapy. Small 2015, 11, 3162-3173.

204

Zhou, F. Y.; Feng, B.; Yu, H. J.; Wang, D. G.; Wang, T. T.; Liu, J. P.; Meng, Q. S.; Wang, S. L.; Zhang, P. C.; Zhang, Z. W. et al. Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics 2016, 6, 679-687.

205

Chatterjee, B.; Ghoshal, A.; Chattopadhyay, A.; Ghosh, S. S. dGTP- templated luminescent gold nanocluster-based composite nanoparticles for cancer theranostics. ACS Biomater. Sci. Eng. 2018, 4, 1005-1012.

206

Ghoshal, A.; Goswami, U.; Sahoo, A. K.; Chattopadhyay, A.; Ghosh, S. S. Targeting Wnt canonical signaling by recombinant sFRP1 bound luminescent Au-nanocluster embedded nanoparticles in cancer theranostics. ACS Biomater. Sci. Eng. 2015, 1, 1256-1266.

207

Chen, H. Y.; Albert, K.; Wen, C. C.; Hsieh, P. Y.; Chen, S. Y.; Huang, N. C.; Lo, S. C.; Chen, J. K.; Hsu, H. Y. Multifunctional silver nanocluster- hybrid oligonucleotide vehicle for cell imaging and microRNA-targeted gene silencing. Colloids Surf. B Biointerfaces 2017, 152, 423-431.

208

Liu, R.; Xiao, W.; Hu, C.; Xie, R.; Gao, H. L. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J. Control. Release 2018, 278, 127-139.

209

Tao, Y.; Zhang, Y.; Ju, E. G.; Ren, H.; Ren, J. S. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. Nanoscale 2015, 7, 12419-12426.

210

Li, Q. Z.; Pan, Y. T.; Chen, T. K.; Du, Y. X.; Ge, H. H.; Zhang, B. C.; Xie, J. P.; Yu, H. Z.; Zhu, M. Z. Design and mechanistic study of a novel gold nanocluster-based drug delivery system. Nanoscale 2018, 10, 10166-10172.

211

Chen, D. H.; Gao, S. P.; Ge, W.; Li, Q. W.; Jiang, H.; Wang, X. M. One-step rapid synthesis of fluorescent platinum nanoclusters for cellular imaging and photothermal treatment. RSC Adv. 2014, 4, 40141-40145.

212

Zhang, Y. Y.; Li, J. C.; Jiang, H.; Zhao, C. Q.; Wang, X. M. Rapid tumor bioimaging and photothermal treatment based on GSH-capped red fluorescent gold nanoclusters. RSC Adv. 2016, 6, 63331-63337.

213

Zhang, C. L.; Li, C.; Liu, Y. L.; Zhang, J. P.; Bao, C. C.; Liang, S. J.; Wang, Q.; Yang, Y.; Fu, H. L.; Wang, K. et al. Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Adv. Funct. Mater. 2015, 25, 1314-1325.

214

Ai, J.; Li, J.; Ga, L.; Yun, G. H.; Xu, L.; Wang, E. K. Multifunctional near-infrared fluorescent nanoclusters for simultaneous targeted cancer imaging and photodynamic therapy. Sensor. Actuat. B Chem. 2016, 222, 918-922.

215

Li, H.; Wang, P.; Deng, Y. X.; Zeng, M. Y.; Tang, Y.; Zhu, W. H.; Cheng, Y. S. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials 2017, 139, 30-38.

216

Kawasaki, H.; Kumar, S.; Li, G.; Zeng, C. J.; Kauffman, D. R.; Yoshimoto, J.; Iwasaki, Y.; Jin, R. C. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters. Chem. Mater. 2014, 26, 2777-2788.

217

Miyata, S.; Miyaji, H.; Kawasaki, H.; Yamamoto, M.; Nishida, E.; Takita, H.; Akasaka, T.; Ushijima, N.; Iwanaga, T.; Sugaya, T. Antimicrobial photodynamic activity and cytocompatibility of Au25(capt)18 clusters photoexcited by blue LED light irradiation. Int. J. Nanomed. 2017, 12, 2703-2716.

218

Cifuentes-Rius, A.; Ivask, A.; Das, S.; Penya-Auladell, N.; Fabregas, L.; Fletcher, N. L.; Houston, Z. H.; Thurecht, K. J.; Voelcker, N. H. Gold nanocluster-mediated cellular death under electromagnetic radiation. ACS Appl. Mater. Interfaces 2017, 9, 41159-41167.

219

Liang, G. H.; Jin, X. D.; Zhang, S. X.; Xing, D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials 2017, 144, 95-104.

220

Huang, H. Y.; Cai, K. B.; Chen, P. W.; Lin, C. A. J.; Chang, S. H.; Yuan, C. T. Engineering ligand-metal charge-transfer states in cross-linked gold nanoclusters for greener luminescent solar concentrators with solid-state quantum yields exceeding 50% and low reabsorption losses. J. Phys. Chem. C 2018, 122, 20019-20026.

221

Soldan, G.; Aljuhani, M. A.; Bootharaju, M. S.; AbdulHalim, L. G.; Parida, M. R.; Emwas, A. H.; Mohammed, O. F.; Bakr, O. M. Gold doping of silver nanoclusters: A 26-fold enhancement in the luminescence quantum yield. Angew. Chem., Int. Ed. 2016, 55, 5749-5753.

222

Deng, H. H.; Shi, X. Q.; Wang, F. F.; Peng, H. P.; Liu, A. L.; Xia, X. H.; Chen, W. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host-guest recognition. Chem. Mater. 2017, 29, 1362-1369.

223

Naaz, S.; Poddar, S.; Bayen, S. P.; Mondal, M. K.; Roy, D.; Mondal, S. K.; Chowdhury, P.; Saha, S. K. Tenfold enhancement of fluorescence quantum yield of water soluble silver nanoclusters for nano-molar level glucose sensing and precise determination of blood glucose level. Sensor. Actuat. B Chem. 2018, 255, 332-340.

224

Vinluan Ⅲ, R. D.; Liu, J. B.; Zhou, C.; Yu, M. X.; Yang, S. Y.; Kumar, A.; Sun, S. S.; Dean, A.; Sun, X. K.; Zheng, J. Glutathione-coated luminescent gold nanoparticles: A surface ligand for minimizing serum protein adsorption. ACS Appl. Mater. Interfaces 2014, 6, 11829-11833.

225

Vinluan Ⅲ, R. D.; Yu, M. X.; Gannaway, M.; Sullins, J.; Xu, J.; Zheng, J. Labeling monomeric insulin with renal-clearable luminescent gold nanoparticles. Bioconjugate Chem. 2015, 26, 2435-2441.

226

Yang, S. Y.; Sun, S. S.; Zhou, C.; Hao, G. Y.; Liu, J. B.; Ramezani, S.; Yu, M. X.; Sun, X. K.; Zheng, J. Renal clearance and degradation of glutathione- coated copper nanoparticles. Bioconjugate Chem. 2015, 26, 511-519.

227

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 2018, 30, 2800-2808.

228

Zheng, K. Y.; Setyawati, M. I.; Lim, T. P.; Leong, D. T.; Xie, J. P. Antimicrobial cluster bombs: Silver nanoclusters packed with daptomycin. ACS Nano 2016, 10, 7934-7942.

229

Yang, L.; Yao, C.; Li, F.; Dong, Y. H; Zhang, Z. K.; Yang, D. Y. Synthesis of branched DNA scaffolded super-nanoclusters with enhanced antibacterial performance. Small 2018, 14, 1800185.

230

Chen, W. Y.; Lin, J. Y.; Chen, W. J.; Luo, L. Y.; Wei-Guang Diau, E.; Chen, Y. C. Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine 2010, 5, 755-764.

231

Díez, I.; Eronen, P.; Österberg, M.; Linder, M. B.; Ikkala, O.; Ras, R. H. A. Functionalization of nanofibrillated cellulose with silver nanoclusters: Fluorescence and antibacterial activity. Macromol. Biosci. 2011, 11, 1185-1191.

232

Miao, H.; Zhong, D.; Zhou, Z. N; Yang, X. M. Papain-templated Cu nanoclusters: Assaying and exhibiting dramatic antibacterial activity cooperating with H2O2. Nanoscale 2015, 7, 19066-19072.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 November 2018
Revised: 21 January 2019
Accepted: 26 January 2019
Published: 29 May 2019
Issue date: June 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

Z. K. L. acknowledges the financial support from the National Natural Science Foundation of China (No. 21107083), Zhejiang Public Welfare Technology Research Project (No. LGF19H030014), and Zhejiang Medical and Health Science & Technology Project (No. 2018PY032). R. C. J. acknowledges the support from the AFOSR.

Return