Journal Home > Volume 12 , Issue 4

Atherosclerotic plaque rupture results in thrombus formation and vessel occlusion, and is the leading cause of death worldwide. There is a pressing need to identify plaque vulnerability for the treatment of carotid and coronary artery diseases. Nanomaterials with enzyme-like properties have attracted significant interest by providing biological, diagnostic and prognostic information about the diseases. Here we showed that bioengineered magnetoferritin nanoparticles (M-HFn NPs) functionally mimic peroxidase enzyme and can intrinsically recognize plaque-infiltrated active macrophages, which drive atherosclerotic plaque progression and rupture and are significantly associated with the plaque vulnerability. The M-HFn nanozymes catalyze the oxidation of colorimetric substrates to give a color reaction that visualizes the recognized active macrophages for one-step pathological identification of plaque vulnerability. We examined 50 carotid endarterectomy specimens from patients with symptomatic carotid disease and demonstrated that the M-HFn nanozymes could distinguish active macrophage infiltration in ruptured and high-risk plaque tissues, and M-HFn staining displayed a significant correlation with plaque vulnerability (r = 0.89, P < 0.0001).


menu
Abstract
Full text
Outline
About this article

Bioengineered magnetoferritin nanozymes for pathological identification of high-risk and ruptured atherosclerotic plaques in humans

Show Author's information Tao Wang1,§Jiuyang He2,3,§Demin Duan3Bing Jiang3Peixia Wang3Kelong Fan3Minmin Liang3( )Xiyun Yan3( )
Department of Neurosurgery,Peking University Third Hospital,Beijing,100191,China;
Savaid Medical School,University of Chinese Academy of Sciences,Beijing,100049,China;
Key Laboratory of Protein and Peptide Pharmaceutical,Institute of Biophysics, Chinese Academy of Sciences,Beijing,100101,China;

§ Tao Wang and Jiuyang He contributed equally to this work.

Abstract

Atherosclerotic plaque rupture results in thrombus formation and vessel occlusion, and is the leading cause of death worldwide. There is a pressing need to identify plaque vulnerability for the treatment of carotid and coronary artery diseases. Nanomaterials with enzyme-like properties have attracted significant interest by providing biological, diagnostic and prognostic information about the diseases. Here we showed that bioengineered magnetoferritin nanoparticles (M-HFn NPs) functionally mimic peroxidase enzyme and can intrinsically recognize plaque-infiltrated active macrophages, which drive atherosclerotic plaque progression and rupture and are significantly associated with the plaque vulnerability. The M-HFn nanozymes catalyze the oxidation of colorimetric substrates to give a color reaction that visualizes the recognized active macrophages for one-step pathological identification of plaque vulnerability. We examined 50 carotid endarterectomy specimens from patients with symptomatic carotid disease and demonstrated that the M-HFn nanozymes could distinguish active macrophage infiltration in ruptured and high-risk plaque tissues, and M-HFn staining displayed a significant correlation with plaque vulnerability (r = 0.89, P < 0.0001).

Keywords: nanozymes, atherosclerosis, high-risk plaques, ruptured plaques, magnetoferritin nanoparticles, pathological diagnosis

References(38)

1

Otsuka, F.; Kramer, M. C. A.; Woudstra, P.; Yahagi, K.; Ladich, E.; Finn, A. V.; de Winter, R. J.; Kolodgie, F. D.; Wight, T. N.; Davis, H. R. et al. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: A pathology study. Atherosclerosis 2015, 241, 772–782.

2

Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. New Engl. J. Med. 2005, 352, 1685–1695.

3

Narula, J.; Nakano, M.; Virmani, R.; Kolodgie, F. D.; Petersen, R.; Newcomb, R.; Malik, S.; Fuster, V.; Finn, A. V. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J. Am. Coll. Cardiol. 2013, 61, 1041–1051.

4

Virmani, R.; Kolodgie, F. D.; Burke, A. P.; Farb, A.; Schwartz, S. M. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1262–1275.

5

Libby, P.; Ridker, P. M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143.

6

Moore, K. J.; Sheedy, F. J.; Fisher, E. A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013, 13, 709–721.

7

Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874.

8

Moore, K. J.; Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011, 145, 341–355.

9

Terashima, M.; Uchida, M.; Kosuge, H.; Tsao, P. S.; Young, M. J.; Conolly, S. M.; Douglas, T.; McConnell, M. V. Human ferritin cages for imaging vascular macrophages. Biomaterials 2011, 32, 1430–1437.

10

Rogers, I. S.; Tawakol, A. Imaging of coronary inflammation with fdg-pet: Feasibility and clinical hurdles. Curr. Cardiol. Rep. 2011, 13, 138–144.

11

Stone, G. W.; Maehara, A.; Lansky, A. J.; de Bruyne, B.; Cristea, E.; Mintz, G. S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S. P. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 2011, 364, 226–235.

12

Tahara, N.; Mukherjee, J.; De Haas, H. J.; Petrov, A. D.; Tawakol, A.; Haider, N.; Tahara, A.; Constantinescu, C. C.; Zhou, J.; Boersma, H. H. et al. 2-Deoxy-2-[18F] fluoro-D-mannose positron emission tomography imaging in atherosclerosis. Nat. Med. 2014, 20, 215–219.

13

Weissleder, R.; Nahrendorf, M.; Pittet, M. J. Imaging macrophages with nanoparticles. Nat. Mater. 2014, 13, 125–138.

14

Lobatto, M. E.; Claudia, C.; Millon, A.; Senders, M. L.; Fay, F.; Robson, P. M.; Ramachandran, S.; Binderup, T.; Paridaans, M. P. M.; Sensarn, S. et al. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano 2015, 9, 1837–1847.

15

Li, X.; Wang, C.; Tan, H.; Cheng, L. L.; Liu, G. B.; Yang, Y.; Zhao, Y. Z.; Zhang, Y. Q.; Li, Y. L.; Zhang, C. F. et al. Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques. Biomaterials 2016, 108, 71–80.

16

Tonga, G. Y.; Jeong, Y.; Duncan, B.; Mizuhara, T.; Mout, R.; Das, R.; Kim, S. T.; Yeh, Y. C.; Yan, B.; Hou, S. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 2015, 7, 597–603.

17

Wang, X. Y.; Hu, Y. H.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60.

18

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

19

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

20

Gao, N.; Dong, K.; Zhao, A. D.; Sun, H. J.; Wang, Y.; Ren, J. S.; Qu, X. G. Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer's disease. Nano Res. 2016, 9, 1079–1090.

21

Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.

22

Wei, H.; Wang, E. K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254.

23

Feng, L. Z.; Dong, Z. L.; Liang, C.; Chen, M. C.; Tao, D. L.; Cheng, L.; Yang, K.; Liu, Z. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials 2018, 181, 81–91.

24

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

25

Liang, M. M.; Fan, K. L.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D. L.; Lu, D.; Feng, J.; Zhao, J. J.; Yang, L. et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal. Chem. 2012, 85, 308–312.

26

Zhuang, J.; Fan, K. L.; Gao, L. Z.; Lu, D.; Feng, J.; Yang, D. L.; Gu, N.; Zhang, Y.; Liang, M. M.; Yan, X. Y. Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity. Mol. Pharm. 2012, 9, 1983–1989.

27

Fan, K. L.; Cao, C. Q.; Pan, Y. X.; Lu, D.; Yang, D. L.; Feng, J.; Song, L. N.; Liang, M. M.; Yan, X. Y. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 2012, 7, 459–464.

28

Zhao, Y. Z.; Liang, M. M.; Li, X.; Fan, K. L.; Xiao, J.; Li, Y. L.; Shi, H. C.; Wang, F.; Choi, H. S.; Cheng, D. F. et al. Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano 2016, 10, 4184–4191.

29

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

30

Xu, Z. B.; Qiu, Z. Y.; Liu, Q.; Huang, Y. X.; Li, D. D.; Shen, X. G.; Fan, K. L.; Xi, J. Q.; Gu, Y. H.; Tang, Y. et al. Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. Nat. Commun. 2018, 9, 3713.

31

Liang, M. M.; Fan, K. L.; Zhou, M.; Duan, D. M.; Zheng, J. Y.; Yang, D. L.; Feng, J.; Yan, X. Y. H-ferritin–nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc. Natl. Acad. Sci. USA 2014, 111, 14900–14905.

32

Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126.

33

Ding, J. L.; Wang, Y. H.; Ma, M.; Zhang, Y.; Lu, S. S.; Jiang, Y. N.; Qi, C. M.; Luo, S. H.; Dong, G.; Wen, S. et al. CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques. Biomaterials 2013, 34, 209–216.

34

Chinetti-Gbaguidi, G.; Colin, S.; Staels, B. Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol. 2015, 12, 10–17.

35

Li, W.; Xu, L. H.; Forssell, C.; Sullivan, J. L.; Yuan, X. M. Overexpression of transferrin receptor and ferritin related to clinical symptoms and destabilization of human carotid plaques. Exp. Biol. Med. 2008, 233, 818–826.

36

Fargion, S.; Arosio, P.; Fracanzani, A. L.; Cislaghi, V.; Levi, S.; Cozzi, A.; Piperno, A.; Fiorelli, G. Characteristics and expression of binding sites specific for ferritin h-chain on human cell lines. Blood 1988, 71, 753–757.

37

Liang, M. M.; Tan, H.; Zhou, J.; Wang, T.; Duan, D. M.; Fan, K. L.; He, J. Y.; Cheng, D. F.; Shi, H. C.; Choi, H. S. et al. Bioengineered H-ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis. ACS Nano 2018, 12, 9300–9308.

38

Salacinski, P. R. P.; McLean, C.; Sykes, J. E. C.; Clement-Jones, V. V.; Lowry, P. J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1, 3, 4, 6-tetrachloro-3α, 6α-diphenyl glycoluril (iodogen). Anal. Biochem. 1981, 117, 136–146.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 December 2018
Revised: 23 January 2019
Accepted: 29 January 2019
Published: 05 March 2019
Issue date: April 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the following grants: the National Key R & D Program of China (No. 2017YFA0205501), the National Natural Science Foundation of China (Nos. 81722024 and 81571728), the Key Research of Frontier Sciences (No. QYZDY-SSW-SMC013), and Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2014078).

Return