Journal Home > Volume 12 , Issue 6

In this work, homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect. It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batteries (LIBs). Impressively, the Ni0.33Co0.67Se hollow nanoprisms show superior specific capacity (1, 575 mAh/g at the current density of 100 mA/g) and outstanding rate performance (850 mAh/g at 2, 000 mA/g) as anode material for LIBs. This work proves the potential of bimetallic chalcogenide compounds as high performance anode materials for LIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Novel hollow Ni0.33Co0.67Se nanoprisms for high capacity lithium storage

Show Author's information Shaohua ZhuCheng ChenPan HeShuangshuang TanFangyu XiongZiang LiuPeng ZhuoQinyou An( )Liqiang Mai( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan,430070,China;

Abstract

In this work, homogeneous Ni0.33Co0.67Se hollow nanoprisms were synthesized successfully in virtue of Kirkendall effect. It is the first time for bimetallic Ni-Co compounds Ni0.33Co0.67Se to be used in lithium-ion batteries (LIBs). Impressively, the Ni0.33Co0.67Se hollow nanoprisms show superior specific capacity (1, 575 mAh/g at the current density of 100 mA/g) and outstanding rate performance (850 mAh/g at 2, 000 mA/g) as anode material for LIBs. This work proves the potential of bimetallic chalcogenide compounds as high performance anode materials for LIBs.

Keywords: high capacity, anode, lithium-ion batteries, Ni0.33Co0.67Se, hollow nanoprisms

References(38)

1

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577-3613.

2

Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909-7937.

3

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

4

Chen, C.; Fan, Y. Q.; Gu, J. H.; Wu, L. M.; Passerini, S.; Mai, L. Q. One-dimensional nanomaterials for energy storage. J. Phys. D Appl. Phys. 2018, 51, 113002.

5

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.

6

Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115-3141.

7

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

8

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.

9

Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088-3095.

10

Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Li, W. J.; Kang, Y. M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728-6735.

11

Liu, J.; Wu, C.; Xiao, D. D.; Kopold, P.; Gu, L.; van Aken, P. A.; Maier, J.; Yu, Y. MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small 2016, 12, 2354-2364.

12

Yu, L.; Yang, J. F.; Lou, X. W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chem., Int. Ed. 2016, 55, 13422-13426.

13

Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527-1535.

14

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28-E62.

15

Yu, X. Y.; Yu, L.; Lou, X. W. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1501333.

16

Yu, L.; Wu, H. B.; Lou, X. W D. Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 2017, 50, 293-301.

17

Zhang, L.; Wu, H. B.; Lou, X. W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 2013, 135, 10664-10672.

18

Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488-1504.

19

Wei, Q. L.; Xiong, F. Y.; Tan, S. S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Q. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300.

20

Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process. Adv. Mater. 2010, 22, 347-351.

21

Chen, H. C.; Jiang, J. J.; Zhang, L.; Qi, T.; Xia, D. D.; Wan, H. Z. Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J. Power Sources 2014, 248, 28-36.

22

Du, W.; Liu, R. M.; Jiang, Y. W.; Lu, Q. Y.; Fan, Y. Z.; Gao. F. Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J. Power Sources 2013, 227, 101-105.

23

He, T. O.; Wang, W. C.; Yang, X. L.; Cao, Z. M.; Kuang, Q.; Wang, Z.; Shan, Z. W.; Jin, M. S.; Yin, Y. D. Inflating hollow nanocrystals through a repeated Kirkendall cavitation process. Nat. Commun. 2017, 8, 1261.

24

Shinde, D. V.; De Trizio, L.; Dang, Z. Y.; Prato, M.; Gaspari, R.; Manna, L. Hollow and porous nickel cobalt perselenide nanostructured microparticles for enhanced electrocatalytic oxygen evolution. Chem. Mater. 2017, 29, 7032-7041.

25

Wang, Q. F.; Ma, Y.; Wu, Y. L.; Zhang, D. H.; Miao, M. H. Flexible asymmetric threadlike supercapacitors based on NiCo2Se4 nanosheet and NiCo2O4/polypyrrole electrodes. ChemSusChem 2017, 10, 1427-1435.

26

Chen, H. C.; Chen, S.; Fan, M. Q.; Li, C.; Chen, D.; Tian, G. L.; Shu, K. Y. Bimetallic nickel cobalt selenides: A new kind of electroactive material for high-power energy storage. J. Mater. Chem. A 2015, 3, 23653-23659.

27

Zhang, H. X.; Ding, Q.; He, D. H.; Liu, H.; Liu, W.; Li, Z. J.; Yang, B.; Zhang, X. W.; Lei, L. C.; Jin, S. A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production. Energy Environ. Sci. 2016, 9, 3113-3119.

28

Wang, J. G.; Jin, D. D.; Zhou, R.; Shen, C.; Xie, K. Y.; Wei, B. Q. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J. Power Sources 2016, 306, 100-106.

29

Yu, L.; Zhang, L.; Wu, H. B.; Lou, X. W. Formation of NixCo3-xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew. Chem., Int. Ed. 2014, 53, 3711-3714.

30

Shen, L. F.; Che, Q.; Li, H. S.; Zhang, X. G. Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 2014, 24, 2630-2637.

31

Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868-1872.

32

Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 2002, 14, 2847-2848.

33

Li, J. F.; Xiong, S. L.; Liu, Y. R.; Ju, Z. C.; Qian, Y. T. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 981-988.

34

Zhu, S. H.; Li, Q. D.; Wei, Q. L.; Sun, R. M.; Liu, X. Q.; An, Q. Y.; Mai, L. Q. NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery. ACS Appl. Mater. Interfaces 2016, 9, 311-316.

35

Park, S. K.; Kim, J. K.; Kang, Y. C. Metal-organic framework-derived CoSe2/(NiCo)Se2 box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution. J. Mater. Chem. A 2017, 5, 18823-18830.

36

Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609-4613.

37

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903-1911.

38

Wang, Y. W.; Yu, L.; Lou, X. W. Formation of triple-shelled molybdenum-polydopamine hollow spheres and their conversion into MoO2/carbon composite hollow spheres for lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 14668-14672.

File
12274_2019_2311_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2018
Revised: 19 January 2019
Accepted: 24 January 2019
Published: 29 May 2019
Issue date: June 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51425204, 51521001, and 51602239), the National Key R & D Program of China (No. 2016YFA0202603), the Program of Introducing Talents of Discipline to Universities (No. B17034), the Yellow Crane Talent (Science & Technology) Program of Wuhan City, and the International Science & Technology Cooperation Program of China (No. 2013DFA50840).

Return