Journal Home > Volume 12 , Issue 7

The rapid rise of modern industry is the source of unchecked effluents containing many pernicious heavy metals (e.g., cadmium). To rehabilitate the ecology, food resources, and health of humans and animals, various conventional methodologies are being used in wastewater treatment facilities for the abatement of cadmium. Nonetheless, the development of advanced, economical, and efficient adsorbents is needed because of the many shortcomings of conventional methods (e.g., high cost, intensive operation, and inefficiency). Recent advancements in materials science and chemistry have introduced the use of nanomaterials, which possess very high specific surface areas and multiple functionalities, for the removal of specific targets such as cadmium. This review explores the recent developments and trends in nanomaterial adsorption technology for the mitigation of cadmium. The paper further surveys the present obstacles and future opportunities for the advancement of nanomaterial-based technologies in the area of water treatment.


menu
Abstract
Full text
Outline
About this article

Nanomaterials for the abatement of cadmium (Ⅱ) ions from water/wastewater

Show Author's information Kumar Vikrant1Vanish Kumar2Kowsalya Vellingiri3Ki-Hyun Kim1( )
Department of Civil and Environmental Engineering,Hanyang University,222 Wangsimni-ro, Seoul,04763,Republic of Korea;
National Agri-Food Biotechnology Institute (NABI),S.A.S. Nagar,Punjab,140306,India;
Environmental and Water Resources Engineering Division,Department of Civil Engineering, IIT Madras,Chennai,600036,India;

Abstract

The rapid rise of modern industry is the source of unchecked effluents containing many pernicious heavy metals (e.g., cadmium). To rehabilitate the ecology, food resources, and health of humans and animals, various conventional methodologies are being used in wastewater treatment facilities for the abatement of cadmium. Nonetheless, the development of advanced, economical, and efficient adsorbents is needed because of the many shortcomings of conventional methods (e.g., high cost, intensive operation, and inefficiency). Recent advancements in materials science and chemistry have introduced the use of nanomaterials, which possess very high specific surface areas and multiple functionalities, for the removal of specific targets such as cadmium. This review explores the recent developments and trends in nanomaterial adsorption technology for the mitigation of cadmium. The paper further surveys the present obstacles and future opportunities for the advancement of nanomaterial-based technologies in the area of water treatment.

Keywords: adsorption, nanomaterials, cadmium, pollution control, water purification, heavy metal

References(223)

1

Borah, R.; Kumari, D.; Gogoi, A.; Biswas, S.; Goswami, R.; Shim, J.; Begum, N. A.; Kumar, M. Efficacy and field applicability of Burmese grape leaf extract (BGLE) for cadmium removal: An implication of metal removal from natural water. Ecotoxicol. Environ. Saf. 2018, 147, 585–593.

2

Davis, A. D.; Webb, C. J.; Sorensen, J. L.; Dixon, D. J.; Hudson, R. Geochemical thermodynamics of cadmium removal from water with limestone. Environ. Earth Sci. 2018, 77, 37.

3

Ilic, M.; Jovic, S.; Spalevic, P.; Vujicic, I. Water cycle estimation by neuro-fuzzy approach. Comp. Electron. Agric. 2017, 135, 1–3.

4

Vikrant, K.; Kim, K. -H.; Ok, Y. S.; Tsang, D. C. W.; Tsang, Y. F.; Giri, B. S.; Singh, R. S. Engineered/designer biochar for the removal of phosphate in water and wastewater. Sci. Total Environ. 2018, 616–617, 1242–1260.

5

Gustin, K.; Tofail, F.; Vahter, M.; Kippler, M. Cadmium exposure and cognitive abilities and behavior at 10 years of age: A prospective cohort study. Environ. Int. 2018, 113, 259–268.

6

Luca, F. -A.; Ciobanu, C. -I.; Andrei, A. G.; Horodnic, A. V. Raising awareness on health impact of the chemicals used in consumer products: Empirical evidence from east-central europe. Sustainability 2018, 10, 209.

7

Zheng, W.; Xu, Y. -M.; Wu, D. -D.; Yao, Y.; Liang, Z. -L.; Tan, H. W.; Lau, A. T. Y. Acute and chronic cadmium telluride quantum dots-exposed human bronchial epithelial cells: The effects of particle sizes on their cytotoxicity and carcinogenicity. Biochem. Biophys. Res. Commun. 2018, 495, 899–903.

8

Jacquet, A.; Arnaud, J.; Hininger-Favier, I.; Hazane-Puch, F.; Couturier, K.; Lénon, M.; Lamarche, F.; Ounnas, F.; Fontaine, E.; Moulis, J. -M. et al. Impact of chronic and low cadmium exposure of rats: Sex specific disruption of glucose metabolism. Chemosphere 2018, 207, 764–773.

9

Belhaj, D.; Athmouni, K.; Ahmed, M. B.; Aoiadni, N.; El Feki, A.; Zhou, J. L.; Ayadi, H. Polysaccharides from Phormidium versicolor (NCC466) protecting HepG2 human hepatocellular carcinoma cells and rat liver tissues from cadmium toxicity: Evidence from in vitro and in vivo tests. Int. J. Biol. Macromol. 2018, 113, 813–820.

10

Skipper, A.; Sims, J. N.; Yedjou, C. G.; Tchounwou, P. B. Cadmium chloride induces DNA damage and apoptosis of human liver carcinoma cells via oxidative stress. Int. J. Environ. Res. and Public Health 2016, 13, 88.

11

Dar, M. I.; Green, I. D.; Naikoo, M. I.; Khan, F. A.; Ansari, A. A.; Lone, M. I. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard–aphid–beetle food chain. Science of The Total Environment 2017, 584-585, 1221–1229.

12

Bravo, D.; Pardo-Díaz, S.; Benavides-Erazo, J.; Rengifo-Estrada, G.; Braissant, O.; Leon-Moreno, C. Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. J. Appl. Microbiol. 2018, 124, 1175–1194.

13

White, A. J.; O'Brien, K. M.; Jackson, B. P.; Karagas, M. R. Urine and toenail cadmium levels in pregnant women: A reliability study. Environ. Int. 2018, 118, 86–91.

14

Idrees, N.; Tabassum, B.; Abd_Allah, E. F.; Hashem, A.; Sarah, R.; Hashim, M. Groundwater contamination with cadmium concentrations in some West U.P. Regions, India. Saudi J. Biol. Sci. 2018, 25, 1365–1368.

15

Kobielska, P. A.; Howarth, A. J.; Farha, O. K.; Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92–107.

16

Zare, E. N.; Motahari, A.; Sillanpää, M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environ. Res. 2018, 162, 173–195.

17

Shakya, M.; Rene, E. R.; Nancharaiah, Y. V.; Lens, P. N. L. Fungal-based nanotechnology for heavy metal removal. In Nanotechnology, Food Security and Water Treatment; Gothandam, K. M.; Ranjan, S.; Dasgupta, N.; Ramalingam, C.; Lichtfouse, E., Eds.; Springer International Publishing: Cham, 2018; pp 229–253.

DOI
18

Burakov, A. E.; Galunin, E. V.; Burakova, I. V.; Kucherova, A. E.; Agarwal, S.; Tkachev, A. G.; Gupta, V. K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712.

19

Vikrant, K.; Kumar, V.; Kim, K. -H.; Kukkar, D. Metal-organic frameworks (MOFs): Potential and challenges for capture and abatement of ammonia. J. Mater. Chem. A 2017, 5, 22877–22896.

20

Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 2018, 356, 147–164.

21

Azzaza, S.; Kumar, R. T.; Vijaya, J. J.; Bououdina, M. Nanomaterials for heavy metal removal. In Advanced Environmental Analysis: Applications of Nanomaterials; The Royal Society of Chemistry, 2017; Vol. 1, pp 139–166.

22

Ahmad, Z.; Gao, B.; Mosa, A.; Yu, H. W.; Yin, X. Q.; Bashir, A.; Ghoveisi, H.; Wang, S. S. Removal of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 2018, 180, 437–449.

23

Ihsanullah; Abbas, A.; Al-Amer, A. M.; Laoui, T.; Al-Marri, M. J.; Nasser, M. S.; Khraisheh, M.; Atieh, M. A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161.

24

Vikrant, K.; Kim, K. -H. Nanomaterials for the adsorptive treatment of Hg(Ⅱ) ions from water. Chem. Eng. J. 2019, 358, 264–282.

25

Ray, P. Z.; Shipley, H. J. Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Adv. 2015, 5, 29885–29907.

26

Xu, J.; Cao, Z.; Zhang, Y. L.; Yuan, Z. L.; Lou, Z. M.; Xu, X. H.; Wang, X. K. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364.

27

Fu, F. L.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418.

28

Mirbagheri, S. A.; Hosseini, S. N. Pilot plant investigation on petrochemical wastewater treatmentfor the removal of copper and chromium with the objective of reuse. Desalination 2005, 171, 85–93.

29

Özverdi, A.; Erdem, M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J. Hazard. Mater. 2006, 137, 626–632.

30

Tünay, O.; Kabdaşli, N. Hydroxide precipitation of complexed metals. Water Res. 1994, 28, 2117–2124.

31

Matlock, M. M.; Henke, K. R.; Atwood, D. A. Effectiveness of commercial reagents for heavy metal removal from water with new insights for future chelate designs. J. Hazard. Mater. 2002, 92, 129–142.

32

Matlock, M. M.; Howerton, B. S.; Van Aelstyn, M. A.; Nordstrom, F. L.; Atwood, D. A. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: A field study from an active gold mine in Peru. Environ. Sci. Technol. 2002, 36, 1636–1639.

33

Abumaizar, R. J.; Smith, E. H. Heavy metal contaminants removal by soil washing. J. Hazard. Mater. 1999, 70, 71–86.

34

Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Chemical precipitation of heavy metals from acid mine drainage. Water Res. 2002, 36, 4757–4764.

35

Fu, F. L.; Chen, R. M.; Xiong, Y. Application of a novel strategy— Coordination polymerization precipitation to the treatment of Cu2+-containing wastewaters. Sep. Purif. Technol. 2006, 52, 388–393.

36

Fu, F. L.; Zeng, H. Y.; Cai, Q. H.; Qiu, R. L.; Yu, J.; Xiong, Y. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere 2007, 69, 1783–1789.

37

Da̧browski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106.

38

Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314.

39

Wong, C. -W.; Barford, J. P.; Chen, G. H.; McKay, G. Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin. J. Environ. Chem. Eng. 2014, 2, 698–707.

40

Ahmed, S.; Chughtai, S.; Keane, M. A. The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite. Sep. Purif. Technol. 1998, 13, 57–64.

41

da Fonseca, M. G.; de Oliveira, M. M.; Arakaki, L. N. H. Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral. J. Hazard. Mater. 2006, 137, 288–292.

42

Sanchez, A. G.; Ayuso, E. A.; De Blas, O. J. Sorption of heavy metals from industrial waste water by low-cost mineral silicates. Clay Miner. 1999, 34, 469–477.

43

Barakat, M. A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377.

44

Trivunac, K.; Stevanovic, S. Removal of heavy metal ions from water by complexation-assisted ultrafiltration. Chemosphere 2006, 64, 486–491.

45

Jakobsen, M. R.; Fritt-Rasmussen, J.; Nielsen, S.; Ottosen, L. M. Electrodialytic removal of cadmium from wastewater sludge. J. Hazard. Mater. 2004, 106, 127–132.

46

Kheriji, J.; Tabassi, D.; Hamrouni, B. Removal of Cd(Ⅱ) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Sci. Technol. 2015, 72, 1206–1216.

47

Cañizares, P.; Pérez, Á.; Camarillo, R. Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: Calculation of design parameters. Desalination 2002, 144, 279–285.

48

Vijayalakshmi, A.; Arockiasamy, D. L.; Nagendran, A.; Mohan, D. Separation of proteins and toxic heavy metal ions from aqueous solution by CA/PC blend ultrafiltration membranes. Sep. Purif. Technol. 2008, 62, 32–38.

49

Mbareck, C.; Nguyen, Q. T.; Alaoui, O. T.; Barillier, D. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water. J. Hazard. Mater. 2009, 171, 93–101.

50

Adams, F. V.; Nxumalo, E. N.; Krause, R. W. M.; Hoek, E. M. V.; Mamba, B. B. Preparation and characterization of polysulfone/β-cyclodextrin polyurethane composite nanofiltration membranes. J. Membrane Sci. 2012, 405–406, 291–299.

51

Landaburu-Aguirre, J.; Pongrácz, E.; Perämäki, P.; Keiski, R. L. Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimisation. J. Hazard. Mater. 2010, 180, 524–534.

52

Camarillo, R.; Llanos, J.; García-Fernández, L.; Pérez, Á.; Cañizares, P. Treatment of copper (Ⅱ)-loaded aqueous nitrate solutions by polymer enhanced ultrafiltration and electrodeposition. Sep. Purif. Technol. 2010, 70, 320–328.

53

Mukherjee, R.; Bhunia, P.; De, S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 2016, 292, 284–297.

54

Ibrahim, G. P. S.; Isloor, A. M.; Inamuddin; Asiri, A. M.; Ismail, A. F.; Kumar, R.; Ahamed, M. I. Performance intensification of the polysulfone ultrafiltration membrane by blending with copolymer encompassing novel derivative of poly(styrene-co-maleic anhydride) for heavy metal removal from wastewater. Chem. Eng. J. 2018, 353, 425–435.

55

Nataraj, S. K.; Hosamani, K. M.; Aminabhavi, T. M. Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal. Desalination 2007, 217, 181–190.

56

Duan, J. C.; Lu, Q.; Chen, R. W.; Duan, Y. Q.; Wang, L. F.; Gao, L.; Pan, S. Y. Synthesis of a novel flocculant on the basis of crosslinked Konjac glucomannan-graft-polyacrylamide-co-sodium xanthate and its application in removal of Cu2+ ion. Carbohydr. Polym. 2010, 80, 436–441.

57

El Samrani, A. G.; Lartiges, B. S.; Villiéras, F. Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization. Water Res. 2008, 42, 951–960.

58

Rubio, J.; Tessele, F. Removal of heavy metal ions by adsorptive particulate flotation. Miner. Eng. 1997, 10, 671–679.

59

Blöcher, C.; Dorda, J.; Mavrov, V.; Chmiel, H.; Lazaridis, N. K.; Matis, K. A. Hybrid flotation–membrane filtration process for the removal of heavy metal ions from wastewater. Water Res. 2003, 37, 4018–4026.

60

Aldrich, C.; Feng, D. Removal of heavy metals from wastewater effluents by biosorptive flotation. Miner. Eng. 2000, 13, 1129–1138.

61

Polat, H.; Erdogan, D. Heavy metal removal from waste waters by ion flotation. J. Hazard. Mater. 2007, 148, 267–273.

62

Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M. Removal turbidity and separation of heavy metals using electrocoagulation– electroflotation technique: A case study. J. Hazard. Mater. 2009, 164, 215–222.

63

Belkacem, M.; Khodir, M.; Abdelkrim, S. Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination 2008, 228, 245–254.

64

Bailey, S. E.; Olin, T. J.; Bricka, R. M.; Adrian, D. D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479.

65

Babel, S.; Kurniawan, T. A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003, 97, 219–243.

66

Zhou, G. Y.; Luo, J. M.; Liu, C. B.; Chu, L.; Crittenden, J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018, 131, 246–254.

67

Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 2005, 96, 1518–1521.

68

Mureseanu, M.; Reiss, A.; Stefanescu, I.; David, E.; Parvulescu, V.; Renard, G.; Hulea, V. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 2008, 73, 1499–1504.

69

Khraisheh, M. A. M.; Al-degs, Y. S.; Mcminn, W. A. M. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem. Eng. J. 2004, 99, 177–184.

70

Yan, G. Y.; Viraraghavan, T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 2003, 37, 4486–4496.

71

Brown, M. J.; Lester, J. N. Metal removal in activated sludge: The role of bacterial extracellular polymers. Water Res. 1979, 13, 817–837.

72

Inyang, M. I.; Gao, B.; Yao, Y.; Xue, Y. W.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y. S.; Cao, X. D. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433.

73

Akın Sahbaz, D.; Yakar, A.; Gündüz, U. Magnetic Fe3O4-chitosan micro- and nanoparticles for wastewater treatment. Particul. Sci. Technol. , in press, DOI: 10.1080/02726351.2018.1438544.

74

Ling, L.; Huang, X. -Y.; Zhang, W. -X. Enrichment of precious metals from wastewater with core–shell nanoparticles of iron. Adv. Mater. 2018, 30, 1705703.

75

Korina, E.; Stoilova, O.; Manolova, N.; Rashkov, I. Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. J. Environ. Chem. Eng. 2018, 6, 2075–2084.

76

Castro, L.; Blázquez, M. L.; González, F.; Muñoz, J. A.; Ballester, A. Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy 2018, 179, 44–51.

77

Lee, S. C.; Jeong, Y.; Kim, Y. J.; Kim, H.; Lee, H. U.; Lee, Y. -C.; Lee, S. M.; Kim, H. J.; An, H. -R.; Ha, M. G. et al. Hierarchically three-dimensional (3D) nanotubular sea urchin-shaped iron oxide and its application in heavy metal removal and solar-induced photocatalytic degradation. J. Hazard. Mater. 2018, 354, 283–292.

78

Bagheri, S.; Aghaei, H.; Ghaedi, M.; Asfaram, A.; Monajemi, M.; Bazrafshan, A. A. Synthesis of nanocomposites of iron oxide/gold (Fe3O4/Au) loaded on activated carbon and their application in water treatment by using sonochemistry: Optimization study. Ultrason. Sonochem. 2018, 41, 279–287.

79

Kumar, K. Y.; Muralidhara, H. B.; Nayaka, Y. A.; Balasubramanyam, J.; Hanumanthappa, H. Hierarchically assembled mesoporous ZnO nanorods for the removal of lead and cadmium by using differential pulse anodic stripping voltammetric method. Powder Technol. 2013, 239, 208–216.

80

Zha, R. H.; Nadimicherla, R.; Guo, X. Cadmium removal in waste water by nanostructured TiO2 particles. J. Mater. Chem. A 2014, 2, 13932–13941.

81

Lung, I.; Stan, M.; Opris, O.; Soran, M. -L.; Senila, M.; Stefan, M. Removal of lead(Ⅱ), cadmium(Ⅱ), and arsenic(Ⅲ) from aqueous solution using magnetite nanoparticles prepared by green synthesis with box–behnken design. Anal. Lett. 2018, 51, 2519–2531.

82

Chen, K.; He, J. Y.; Li, Y. L.; Cai, X. G.; Zhang, K. S.; Liu, T.; Hu, Y.; Lin, D. Y.; Kong, L. T.; Liu, J. H. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. J. Colloid Interface Sci. 2017, 494, 307–316.

83

Wang, D.; Guan, K. W.; Bai, Z. P.; Liu, F. Q. Facile preparation of acid-resistant magnetite particles for removal of Sb(Ⅲ) from strong acidic solution. Sci. Technol. Adv. Mater. 2016, 17, 80–88.

84

Beheshtkhoo, N.; Kouhbanani, M. A. J.; Savardashtaki, A.; Amani, A. M.; Taghizadeh, S. Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl. Phys. A 2018, 124, 363.

85

Parveen, S.; Wani, A. H.; Shah, M. A.; Devi, H. S.; Bhat, M. Y.; Koka, J. A. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb. Pathog. 2018, 115, 287–292.

86

Heiligtag, F. J.; Niederberger, M. The fascinating world of nanoparticle research. Mater. Today 2013, 16, 262–271.

87

Seo, K.; Sinha, K.; Novitskaya, E.; Graeve, O. A. Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater. Lett. 2018, 215, 203–206.

88

Gholami, L.; Kazemi Oskuee, R.; Tafaghodi, M.; Ramezani Farkhani, A.; Darroudi, M. Green facile synthesis of low-toxic superparamagnetic iron oxide nanoparticles (SPIONs) and their cytotoxicity effects toward Neuro2A and HUVEC cell lines. Ceram. Int. 2018, 44, 9263–9268.

89

Plachtová, P.; Medříková, Z.; Zbořil, R.; Tuček, J.; Varma, R. S.; Maršálek, B. Iron and iron oxide nanoparticles synthesized with green tea extract: differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustainable Chem. Eng. 2018, 6, 8679–8687.

90

Ehrampoush, M. H.; Miria, M.; Salmani, M. H.; Mahvi, A. H. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J. Environ. Health Sci. Eng. 2015, 13, 84.

91

Ebrahim, S. E.; Sulaymon, A. H.; Saad Alhares, H. Competitive removal of Cu2+, Cd2+, Zn2+, and Ni2+ ions onto iron oxide nanoparticles from wastewater. Desalin. Water Treat. 2016, 57, 20915–20929.

92

Devi, V.; Selvaraj, M.; Selvam, P.; Kumar, A. A.; Sankar, S.; Dinakaran, K. Preparation and characterization of CNSR functionalized Fe3O4 magnetic nanoparticles: An efficient adsorbent for the removal of cadmium ion from water. J. Environ. Chem. Eng. 2017, 5, 4539–4546.

93

OuldM'hamed, M.; Khezami, L.; Alshammari, A. G.; Ould-Mame, S. M.; Ghiloufi, I.; Lemine, O. M. Removal of cadmium(Ⅱ) ions from aqueous solution using Ni (15 wt. %)-doped αFe2O3 nanocrystals: Equilibrium, thermodynamic, and kinetic studies. Water Sci. Technol. 2015, 72, 608–615.

94

Wang, Y.; Tian, T.; Wang, L.; Hu, X. Solid-phase preconcentration of cadmium(Ⅱ) using amino-functionalized magnetic-core silica-shell nanoparticles, and its determination by hydride generation atomic fluorescence spectrometry. Microchim. Acta 2013, 180, 235–242.

95

Simeonidis, K.; Martinez-Boubeta, C.; Zamora-Perez, P.; Rivera-Gil, P.; Kaprara, E.; Kokkinos, E.; Mitrakas, M. Nanoparticles for heavy metal removal from drinking water. In Environmental Nanotechnology; Dasgupta, N.; Ranjan, S.; Lichtfouse, E., Eds.; Springer International Publishing: Cham, 2018; pp 75–124.

DOI
96

Huang, R. Y.; He, L.; Zhang, T.; Li, D. Q.; Tang, P. G.; Feng, Y. J. Novel carbon paper@magnesium silicate composite porous films: Design, fabrication, and adsorption behavior for heavy metal ions in aqueous solution. ACS Appl. Mater. Interfaces 2018, 10, 22776–22785.

97

Huang, R. Y.; Wu, M. J.; Zhang, T.; Li, D. Q.; Tang, P. G.; Feng, Y. J. Template-free synthesis of large-pore-size porous magnesium silicate hierarchical nanostructures for high-efficiency removal of heavy metal ions. ACS Sustainable Chem. Eng. 2017, 5, 2774–2780.

98

Cao, C. Y.; Wei, F.; Qu, J.; Song, W. G. Programmed synthesis of magnetic magnesium silicate nanotubes with high adsorption capacities for lead and cadmium ions. Chem. —Eur. J. 2013, 19, 1558–1562.

99

Garadkar, K. M.; Kadam, A. N.; Park, J. Microwave-assisted sol-gel synthesis of metal oxide nanomaterials. In Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications; Klein, L.; Aparicio, M.; Jitianu, A., Eds.; Springer International Publishing: Cham, 2018; pp 483–504.

DOI
100

Yang, Z. -F.; Li, L. -Y.; Hsieh, C. -T.; Juang, R. -S. Co-precipitation of magnetic Fe3O4 nanoparticles onto carbon nanotubes for removal of copper ions from aqueous solution. J. Taiwan Inst. Chem. Eng. 2018, 82, 56–63.

101

Aseem, A.; Jeba, G. G.; Conato, M. T.; Rimer, J. D.; Harold, M. P. Oxidative coupling of methane over mixed metal oxide catalysts: Steady state multiplicity and catalyst durability. Chem. Eng. J. 2018, 331, 132–143.

102

Behnoudnia, F.; Dehghani, H. Anion effect on the control of morphology for NiC2O4·2H2O nanostructures as precursors for synthesis of Ni(OH)2 and NiO nanostructures and their application for removing heavy metal ions of cadmium(Ⅱ) and lead(Ⅱ). Dalton Trans. 2014, 43, 3471–3478.

103

Gupta, V. K.; Nayak, A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 2012, 180, 81–90.

104

Gusain, D.; Singh, P. K.; Sharma, Y. C. Kinetic and equilibrium modelling of adsorption of cadmium on nano crystalline zirconia using response surface methodology. Environ. Nanotechnol. Monit. Manag. 2016, 6, 99–107.

105

Bhanjana, G.; Dilbaghi, N.; Singhal, N. K.; Kim, K. -H.; Kumar, S. Copper oxide nanoblades as novel adsorbent material for cadmium removal. Ceram. Int. 2017, 43, 6075–6081.

106

Mahdavi, S. Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd+2, Cu+2, and Ni+2 from water. Clean Technol. Environ. Policy 2016, 18, 81–94.

107

Li, X.; Zhao, K.; You, C. Y.; Linghu, W.; Ye, F.; Yu, M.; Alsaedi, A.; Hayat, T.; Pan, H.; Luo, J. et al. Nanocomposites of polyaniline functionalized graphene oxide: Synthesis and application as a novel platform for removal of Cd(Ⅱ), Eu(Ⅲ), Th(IV) and U(VI) in water. J. Radioanal. Nucl. Chem. 2018, 315, 509–522.

108

Moosavian, M. A.; Moazezi, N. Removal of cadmium and zinc ions from industrial wastewater using nanocomposites of PANI/ZnO and PANI/CoHCF: A comparative study. Desalin. Water Treat. 2016, 57, 20817–20836.

109

Rai, P. K.; Kumar, V.; Lee, S.; Raza, N.; Kim, K. -H.; Ok, Y. S.; Tsang, D. C. W. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ. Int. 2018, 119, 1–19.

110

Cao, Y. The toxicity of nanoparticles to human endothelial cells. In Cellular and Molecular Toxicology of Nanoparticles; Saquib, Q.; Faisal, M.; Al-Khedhairy, A. A.; Alatar, A. A., Eds.; Springer International Publishing: Cham, 2018; pp 59–69.

111

Girigoswami, K. Toxicity of metal oxide nanoparticles. In Cellular and Molecular Toxicology of Nanoparticles; Saquib, Q.; Faisal, M.; Al-Khedhairy, A. A.; Alatar, A. A., Eds.; Springer International Publishing: Cham, 2018; pp 99–122.

112

Kovalishyn, V.; Abramenko, N.; Kopernyk, I.; Charochkina, L.; Metelytsia, L.; Tetko, I. V.; Peijnenburg, W.; Kustov, L. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Food Chem. Toxicol. 2018, 112, 507–517.

113

Zhang, Y.; Meng, T. T.; Guo, X.; Yang, R. X.; Si, X. H.; Zhou, J. T. Humic acid alleviates the ecotoxicity of graphene-family materials on the freshwater microalgae Scenedesmus obliquus. Chemosphere 2018, 197, 749–758.

114

Lau, W. -J.; Emadzadeh, D.; Shahrin, S.; Goh, P. S.; Ismail, A. F. Ultrafiltration membranes incorporated with carbon-based nanomaterials for antifouling improvement and heavy metal removal. In Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications; Ismail, A. F.; Goh, P. S., Eds.; Elsevier: Netherlands, 2018; pp 217–232.

DOI
115

Yang, T.; Hodson, M. E. Investigating the potential of synthetic humic-like acid to remove metal ions from contaminated water. Sci. Total Environ. 2018, 635, 1036–1046.

116

Chen, Q. Q.; Yin, D. Q.; Zhu, S. J.; Hu, X. L. Adsorption of cadmium(Ⅱ) on humic acid coated titanium dioxide. J. Colloid Interface Sci. 2012, 367, 241–248.

117

Crini, G.; Lichtfouse, E.; Wilson, L. D.; Morin-Crini, N. Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment. In Green Adsorbents for Pollutant Removal: Fundamentals and Design; Crini, G.; Lichtfouse, E., Eds.; Springer International Publishing: Cham, 2018; pp 23–71.

DOI
118

Ji, Y. J.; Yang, M. Y.; Lin, H. P.; Hou, T. J.; Wang, L.; Li, Y. Y.; Lee, S. -T. Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting. J. Phys. Chem. C 2018, 122, 3123–3129.

119

Alabi, A.; AlHajaj, A.; Cseri, L.; Szekely, G.; Budd, P.; Zou, L. D. Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination. npj Clean Water 2018, 1, 10.

120

Deshmukh, M. A.; Shirsat, M. D.; Ramanaviciene, A.; Ramanavicius, A. Composites based on conducting polymers and carbon nanomaterials for heavy metal ion sensing (review). Crit. Rev. Anal. Chem. 2018, 48, 293–304.

121

Hua, M.; Jiang, Y. N.; Wu, B.; Pan, B. C.; Zhao, X.; Zhang, Q. X. Fabrication of a new hydrous Zr(IV) oxide-based nanocomposite for enhanced Pb(Ⅱ) and Cd(Ⅱ) removal from waters. ACS Appl. Mater. Interfaces 2013, 5, 12135–12142.

122

Yang, S. M.; Morozovska, A. N.; Kumar, R.; Eliseev, E. A.; Cao, Y.; Mazet, L.; Balke, N.; Jesse, S.; Vasudevan, R. K.; Dubourdieu, C. et al. V. Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics. Nat. Phys. 2017, 13, 812–818.

123

Naeem, H.; Ajmal, M.; Muntha, S.; Ambreen, J.; Siddiq, M. Synthesis and characterization of graphene oxide sheets integrated with gold nanoparticles and their applications to adsorptive removal and catalytic reduction of water contaminants. RSC Adv. 2018, 8, 3599–3610.

124

Mauter, M. S.; Zucker, I.; Perreault, F.; Werber, J. R.; Kim, J. -H.; Elimelech, M. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 2018, 1, 166–175.

125

Kunduru, K. R.; Nazarkovsky, M.; Farah, S.; Pawar, R. P.; Basu, A.; Domb, A. J. Nanotechnology for water purification: Applications of nanotechnology methods in wastewater treatment. In Water Purification; Grumezescu, A. M., Ed.; Academic Press: London, UK, 2017; pp 33–74.

DOI
126

Amil Usmani, M.; Khan, I.; H. Bhat, A. H.; Pillai, R. S.; Ahmad, N.; Mohamad Haafiz, M. K.; Oves, M. Current trend in the application of nanoparticles for waste water treatment and purification: A review. Curr. Org. Synth. 2017, 14, 206–226.

127

Xue, W. J.; Huang, D. L.; Zeng, G. M.; Wan, J.; Zhang, C.; Xu, R.; Cheng, M.; Deng, R. Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. J. Hazard. Mater. 2018, 341, 381–389.

128

Yang, F.; Zhang, S. S.; Sun, Y. Q.; Cheng, K.; Li, J. S.; Tsang, D. C. W. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresource Technol. 2018, 265, 490–497.

129

Su, Y. M.; Adeleye, A. S.; Huang, Y. X.; Sun, X. Y.; Dai, C. M.; Zhou, X. F.; Zhang, Y. L.; Keller, A. A. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res. 2014, 63, 102–111.

130

Li, Z. T.; Wang, L.; Meng, J.; Liu, X. M.; Xu, J. M.; Wang, F.; Brookes, P. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(Ⅱ), Pb(Ⅱ), and As(Ⅲ) in aqueous solution and soil. J. Hazard. Mater. 2018, 344, 1–11.

131

Lin, J. J.; Su, B. L.; Sun, M. Q.; Chen, B.; Chen, Z. L. Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology. Sci. Total Environ. 2018, 627, 314–321.

132

Boparai, H. K.; Joseph, M.; O'Carroll, D. M. Cadmium (Cd2+) removal by nano zerovalent iron: Surface analysis, effects of solution chemistry and surface complexation modeling. Environ. Sci. Pollut. Res. 2013, 20, 6210–6221.

133

Fan, D. M.; Lan, Y.; Tratnyek, P. G.; Johnson, R. L.; Filip, J.; O'Carroll, D. M.; Nunez Garcia, A.; Agrawal, A. Sulfidation of iron-based materials: A review of processes and implications for water treatment and remediation. Environ. Sci. Technol. 2017, 51, 13070–13085.

134

Podyacheva, O. Y.; Cherepanova, S. V.; Romanenko, A. I.; Kibis, L. S.; Svintsitskiy, D. A.; Boronin, A. I.; Stonkus, O. A.; Suboch, A. N.; Puzynin, A. V.; Ismagilov, Z. R. Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties. Carbon 2017, 122, 475–483.

135

Su, Y. M.; Adeleye, A. S.; Huang, Y. X.; Zhou, X. F.; Keller, A. A.; Zhang, Y. L. Direct synthesis of novel and reactive sulfide-modified nano iron through nanoparticle seeding for improved cadmium-contaminated water treatment. Sci. Rep. 2016, 6, 24358.

136

Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

137

Roobakhsh, S.; Rostami, Z.; Azizian, S. Can MoS2 nanosheets be used as adsorbent for water treatment? Sep. Purif. Technol. 2018, 200, 23–28.

138

Khalili, S. S.; Dehghani, H.; Afrooz, M. New porphyrin-doped silica monolith: An effective adsorbent for heavy metal ions in aqueous solution. J. Sol-Gel Sci. Technol. 2018, 85, 290–301.

139

Yin, W. Y.; Dong, X. H.; Yu, J.; Pan, J.; Yao, Z. Y.; Gu, Z. J.; Zhao, Y. L. MoS2-nanosheet-assisted coordination of metal ions with porphyrin for rapid detection and removal of cadmium ions in aqueous media. ACS Appl. Mater. Interfaces 2017, 9, 21362–21370.

140

Evans, J. S.; Guo, T. B.; Sun, Y. R.; Liu, W.; Peng, L.; Xu, Z.; Gao, C.; He, S. L. Shape-controlled of ten-nanometer-thick graphite and worm-like graphite by lithographic exfoliation. Carbon 2018, 135, 248–252.

141

Sadegh, H.; Ali, G. A. M.; Gupta, V. K.; Makhlouf, A. S. H.; Shahryari-ghoshekandi, R.; Nadagouda, M. N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem. 2017, 7, 1–14.

142

Krajina, B. A.; Proctor, A. C.; Schoen, A. P.; Spakowitz, A. J.; Heilshorn, S. C. Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature. Prog. Mater. Sci. 2018, 91, 1–23.

143

Qiu, L.; McCaffrey, R.; Zhang, W. Synthesis of metallic nanoparticles using closed-shell structures as templates. Chem. —Asian J. 2018, 13, 362–372.

144

Das, S. K.; Shome, I.; Guha, A. K. Surface functionalization of Aspergillus versicolor mycelia: In situ fabrication of cadmium sulphide nanoparticles and removal of cadmium ions from aqueous solution. RSC Adv. 2012, 2, 3000–3007.

145

Gopalakrishnan, I.; Sugaraj Samuel, R.; Sridharan, K. Nanomaterials-based adsorbents for water and wastewater treatments. In Emerging Trends of Nanotechnology in Environment and Sustainability: A Review-Based Approach; Sridharan, K., Ed.; Springer International Publishing: Cham, 2018; pp 89–98.

DOI
146

Lim, J. Y.; Mubarak, N. M.; Abdullah, E. C.; Nizamuddin, S.; Khalid, M.; Inamuddin. Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—A review. J. Ind. Eng. Chem. 2018, 66, 29–44.

147

Sarkar, B.; Mandal, S.; Tsang, Y. F.; Kumar, P.; Kim, K. -H.; Ok, Y. S. Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review. Sci. Total Environ. 2018, 612, 561–581.

148

Bhanjana, G.; Dilbaghi, N.; Kim, K. -H.; Kumar, S. Carbon nanotubes as sorbent material for removal of cadmium. J. Mol. Liq. 2017, 242, 966–970.

149

Diaz-Flores, P. E.; López-Urías, F.; Terrones, M.; Rangel-Mendez, J. R. Simultaneous adsorption of Cd2+ and phenol on modified N-doped carbon nanotubes: Experimental and DFT studies. J. Colloid Interface Sci. 2009, 334, 124–131.

150

Rocha, R. P.; Soares, O. S. G. P.; Gonçalves, A. G.; Órfão, J. J. M.; Pereira, M. F. R.; Figueiredo, J. L. Different methodologies for synthesis of nitrogen doped carbon nanotubes and their use in catalytic wet air oxidation. Appl. Catal. A: Gen. 2017, 548, 62–70.

151

Pei, H. N.; Wang, J.; Yang, Q. F.; Yang, W. X.; Hu, N.; Suo, Y. R.; Zhang, D. H.; Li, Z. H.; Wang, J. L. Interfacial growth of nitrogen-doped carbon with multi-functional groups on the MoS2 skeleton for efficient Pb(Ⅱ) removal. Sci. Total Environ. 2018, 631–632, 912–920.

152

Perez-Aguilar, N. V.; Muñoz-Sandoval, E.; Diaz-Flores, P. E.; Rangel-Mendez, J. R. Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: Equilibrium and kinetics. J. Nanopart. Res. 2010, 12, 467–480.

153

Tahermansouri, H.; Ahi Roghayeh, M.; Kiani, F. Kinetic, equilibrium and isotherm studies of cadmium removal from aqueous solutions by oxidized multi-walled carbon nanotubes and the functionalized ones with thiosemicarbazide and their toxicity investigations: A comparison. J. Chin. Chem. Soc. 2014, 61, 1188–1198.

154

AlSaadi, M. A.; Al Mamun, A.; Alam, M. Z.; Amosa, M. K.; Atieh, M. A. Removal of cadmium from water by CNT–PAC composite: Effect of functionalization. Nano 2015, 11, 1650011.

155

Veličković, Z. S.; Bajić, Z. J.; Ristić, M. D.; Djokić, V. R.; Marinković, A. D.; Uskoković P. S.; Vuruna, M. M. Modification of multi-wall carbon nanotubes for the removal of cadmium, lead and arsenic from wastewater. Dig. J. Nanomater. Bios. 2013, 8, 501–511.

156

Song, X. Y.; Guo, H.; Tao, J. B.; Zhao, S. L.; Han, X.; Liu, H. L. Encapsulation of single-walled carbon nanotubes with asymmetric pyrenyl-gemini surfactants. Chem. Eng. Sci. 2018, 187, 406–414.

157

Pashai Gatabi, M.; Milani Moghaddam, H.; Ghorbani, M. Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: Equilibrium, kinetic, and thermodynamic study. J. Nanopart. Res. 2016, 18, 189.

158

Samaddar, P.; Son, Y. -S.; Tsang, D. C. W.; Kim, K. -H.; Kumar, S. Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord. Chem. Rev. 2018, 368, 93–114.

159

Sherlala, A. I. A.; Raman, A. A. A.; Bello, M. M.; Asghar, A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 2018, 193, 1004–1017.

160

Deng, J. -H.; Zhang, X. -R.; Zeng, G. -M.; Gong, J. -L.; Niu, Q. -Y.; Liang, J. Simultaneous removal of Cd(Ⅱ) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 2013, 226, 189–200.

161

Shaheen, S. M.; Niazi, N. K.; Hassan, N. E. E.; Bibi, I.; Wang, H. L.; Tsang, D. C. W.; Ok, Y. S.; Bolan, N.; Rinklebe, J. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review. Int. Mater. Rev. , in press, DOI: 10.1080/09506608.2018. 1473096.

162

Xu, G.; Wang, L.; Xie, Y. J.; Tao, M. L.; Zhang, W. Q. Highly selective and efficient adsorption of Hg2+ by a recyclable aminophosphonic acid functionalized polyacrylonitrile fiber. J. Hazard. Mater. 2018, 344, 679–688.

163

Banazadeh, A.; Mozaffari, S.; Osoli, B. Facile synthesis of cysteine functionalized magnetic graphene oxide nanosheets: Application in solid phase extraction of cadmium from environmental sample. J. Environ. Chem. Eng. 2015, 3, 2801–2808.

164

Ghorbani, M.; Shams, A.; Seyedin, O.; Afshar Lahoori, N. Magnetic ethylene diamine-functionalized graphene oxide as novel sorbent for removal of lead and cadmium ions from wastewater samples. Environ. Sci. Pollut. Res. 2018, 25, 5655–5667.

165

Liu, J.; Du, H. Y.; Yuan, S. W.; He, W. X.; Liu, Z. H. Synthesis of thiol-functionalized magnetic graphene as adsorbent for Cd(Ⅱ) removal from aqueous systems. J. Environ. Chem. Eng. 2015, 3, 617–621.

166

Liu, J.; Du, H. Y.; Yuan, S. W.; He, W. X.; Yan, P. J.; Liu, Z. H. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions. Water Sci. Technol. 2015, 71, 1611–1619.

167

Poo, K. -M.; Son, E. -B.; Chang, J. -S.; Ren, X. H.; Choi, Y. -J.; Chae, K. -J. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J. Environ. Manag. 2018, 206, 364–372.

168

Zhang, Y.; Cao, B.; Zhao, L. L.; Sun, L. L.; Gao, Y.; Li, J. J.; Yang, F. Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Appl. Surf. Sci. 2018, 427, 147–155.

169

Liu, T. Z.; Gao, B.; Fang, J.; Wang, B.; Cao, X. D. Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(Ⅱ) and Cd(Ⅱ) removal. RSC Adv. 2016, 6, 24314–24319.

170

Jlassi, K.; Abidi, R.; Benna, M.; Chehimi, M. M.; Kasak, P.; Krupa, I. Bentonite-decorated calix[4] arene: A new, promising hybrid material for heavy-metal removal. Appl. Clay Sci. 2018, 161, 15–22.

171

Liu, Y. N.; Zhong, Z. M. Extraction of heavy metals, dichromate anions and rare metals by new calixarene-chitosan polymers. J. Inorg. Organomet. Polym. Mater. 2018, 28, 962–967.

172

Liu, C.; Zhang, D. X.; Zhao, L. T.; Lu, X.; Zhang, P.; He, S. N.; Hu, G. W.; Tang, X. Q. Synthesis of a thiacalix[4]arenetetrasulfonate-functionalized reduced graphene oxide adsorbent for the removal of lead(Ⅱ) and cadmium(Ⅱ) from aqueous solutions. RSC Adv. 2016, 6, 113352–113365.

173

Vikrant, K.; Kumar, V.; Ok, Y. S.; Kim, K. -H.; Deep, A. Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide. TrAC Trend. Anal. Chem. 2018, 105, 263–281.

174

Fan, M.; Li, T.; Hu, J.; Cao, R.; Wei, X.; Shi, X.; Ruan, W. Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Materials (Basel) 2017, 10, E544.

175

Kong, Q. P.; Wei, C. H.; Preis, S.; Hu, Y.; Wang, F. Facile preparation of nitrogen and sulfur co-doped graphene-based aerogel for simultaneous removal of Cd2+ and organic dyes. Environ. Sci. Pollut. Res. 2018, 25, 21164–21175.

176

Dong, C. C.; Lu, J.; Qiu, B. C.; Shen, B.; Xing, M. Y.; Zhang, J. L. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Appl. Catal. B: Environ. 2018, 222, 146–156.

177

Wu, S. B.; Zhang, K. S.; Wang, X. L.; Jia, Y.; Sun, B.; Luo, T.; Meng, F. L.; Jin, Z.; Lin, D. Y.; Shen, W. et al. Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide. Chem. Eng. J. 2015, 262, 1292–1302.

178

Anirudhan, T. S.; Shainy, F. Adsorption behaviour of 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite for cadmium(Ⅱ) from aqueous solutions. J. Ind. Eng. Chem. 2015, 32, 157–166.

179

Kardam, A.; Raj, K. R.; Srivastava, S.; Srivastava, M. M. Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol. Environ. Policy 2014, 16, 385–393.

180

Sharma, P. R.; Chattopadhyay, A.; Sharma, S. K.; Geng, L. H.; Amiralian, N.; Martin, D.; Hsiao, B. S. Nanocellulose from spinifex as an effective adsorbent to remove cadmium(Ⅱ) from water. ACS Sustainable Chem. Eng. 2018, 6, 3279–3290.

181

Abraham, E.; Deepa, B.; Pothan, L. A.; Jacob, M.; Thomas, S.; Cvelbar, U.; Anandjiwala, R. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym. 2011, 86, 1468–1475.

182

Alizadeh, B.; Delnavaz, M.; Shakeri, A. Removal of Cd(Ⅱ) and phenol using novel cross-linked magnetic EDTA/chitosan/TiO2 nanocomposite. Carbohydr. Polym. 2018, 181, 675–683.

183

Zhang, S.; Lü, T.; Qi, D. M.; Cao, Z. H.; Zhang, D.; Zhao, H. T. Synthesis of quaternized chitosan-coated magnetic nanoparticles for oil-water separation. Mater. Lett. 2017, 191, 128–131.

184

Zhou, L. M.; Wang, Y. P.; Liu, Z. R.; Huang, Q. W. Characteristics of equilibrium, kinetics studies for adsorption of Hg(Ⅱ), Cu(Ⅱ), and Ni(Ⅱ) ions by thiourea-modified magnetic chitosan microspheres. J. Hazard. Mater. 2009, 161, 995–1002.

185

Zhu, Y. H.; Hu, J.; Wang, J. L. Competitive adsorption of Pb(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) onto xanthate-modified magnetic chitosan. J. Hazard. Mater. 2012, 221–222, 155–161.

186

Monier, M.; Ayad, D. M.; Wei, Y.; Sarhan, A. A. Adsorption of Cu(Ⅱ), Co(Ⅱ), and Ni(Ⅱ) ions by modified magnetic chitosan chelating resin. J. Hazard. Mater. 2010, 177, 962–970.

187

Repo, E.; Warchol, J. K.; Kurniawan, T. A.; Sillanpää, M. E. T. Adsorption of Co(Ⅱ) and Ni(Ⅱ) by EDTA-and/or DTPA-modified chitosan: Kinetic and equilibrium modeling. Chem. Eng. J. 2010, 161, 73–82.

188

Zhao, F. P.; Repo, E.; Yin, D. L.; Sillanpää, M. E. T. Adsorption of Cd(Ⅱ) and Pb(Ⅱ) by a novel EGTA-modified chitosan material: Kinetics and isotherms. J. Colloid Interface Sci. 2013, 409, 174–182.

189

Salah, T. A.; Mohammad, A. M.; Hassan, M. A.; El-Anadouli, B. E. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. J. Taiwan Inst. Chem. Eng. 2014, 45, 1571–1577.

190

Chen, L. Y.; Wu, P. X.; Chen, M. Q.; Lai, X. L.; Ahmed, Z.; Zhu, N. W.; Dang, Z.; Bi, Y. Z.; Liu, T. Y. Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead. Appl. Clay Sci. 2018, 159, 74–82.

191

Hossein Beyki, M.; Ghasemi, M. H.; Jamali, A.; Shemirani, F. A novel polylysine–resorcinol base γ-alumina nanotube hybrid material for effective adsorption/preconcentration of cadmium from various matrices. J. Ind. Eng. Chem. 2017, 46, 165–174.

192

Awual, M. R.; Khraisheh, M.; Alharthi, N. H.; Luqman, M.; Islam, A.; Rezaul Karim, M.; Rahman, M. M.; Khaleque, M. A. Efficient detection and adsorption of cadmium(Ⅱ) ions using innovative nano-composite materials. Chem. Eng. J. 2018, 343, 118–127.

193

Cao, C. -Y.; Qu, J.; Wei, F.; Liu, H.; Song, W. -G. Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Appl. Mater. Interfaces 2012, 4, 4283–4287.

194

Keochaiyom, B.; Wan, J.; Zeng, G. M.; Huang, D. L.; Xue, W. J.; Hu, L.; Huang, C.; Zhang, C.; Cheng, M. Synthesis and application of magnetic chlorapatite nanoparticles for zinc(Ⅱ), cadmium(Ⅱ) and lead(Ⅱ) removal from water solutions. J. Colloid Interface Sci. 2017, 505, 824–835.

195

Tabesh, S.; Davar, F.; Loghman-Estarki, M. R. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J. Alloy. Compd. 2018, 730, 441–449.

196

Zhang, Z. Z.; Li, M. Y.; Chen, W.; Zhu, S. Z.; Liu, N. N.; Zhu, L. Y. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ. Pollut. 2010, 158, 514–519.

197

da Rocha, N. C.; de Campos, R. C.; Rossi, A. M.; Moreira, E. L.; do F. Barbosa, A.; Moure, G. T. Cadmium uptake by hydroxyapatite synthesized in different conditions and submitted to thermal treatment. Environ. Sci. Technol. 2002, 36, 1630–1635.

198

Tran, H. N.; You, S. -J.; Chao, H. -P. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. J. Environ. Chem. Eng. 2016, 4, 2671–2682.

199

Al-Khaldi, F. A.; Abu-Sharkh, B.; Abulkibash, A. M.; Atieh, M. A. Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: A comparative study. Desalin. Water Treat. 2015, 53, 1417–1429.

200

Wasewar, K. L.; Kumar, P.; Chand, S.; Padmini, B. N.; Teng, T. T. Adsorption of cadmium ions from aqueous solution using granular activated carbon and activated clay. CLEAN 2010, 38, 649–656.

201

Mathialagan, T.; Viraraghavan, T. Adsorption of cadmium from aqueous solutions by perlite. J. Hazard. Mater. 2002, 94, 291–303.

202

Taamneh, Y.; Sharadqah, S. The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Appl. Water Sci. 2017, 7, 2021–2028.

203

Yang, T.; Li, Y. -K.; Chen, M. -L.; Wang, J. -H. Supported carbon dots decorated with metallothionein for selective cadmium adsorption and removal. Chin. Chem. Lett. 2015, 26, 1496–1501.

204

Sigma-Aldrich. Carbon nanotube, multi-walled [Online]. Merck KGaA: South Korea, 2018; https://www.sigmaaldrich.com/catalog/product/aldrich/659258?lang=ko®ion=KR (accessed Oct 10, 2018).

205

Sigma-Aldrich. Zeolite [Online]. Merck KGaA: South Korea, 2018; https://www.sigmaaldrich.com/catalog/product/sigma/96096?lang=ko®ion=KR (accessed Oct 10, 2018).

206

Kabir, E.; Kumar, V.; Kim, K. -H.; Yip, A. C. K.; Sohn, J. R. Environmental impacts of nanomaterials. J. Environ. Manag. 2018, 225, 261–271.

207

Mubarak, N. M.; Sahu, J. N.; Abdullah, E. C.; Jayakumar, N. S. Removal of heavy metals from wastewater using carbon nanotubes. Sep. Purif. Rev. 2014, 43, 311–338.

208

Das, R.; Ali, M. E.; Hamid, S. B. A.; Ramakrishna, S.; Chowdhury, Z. Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 2014, 336, 97–109.

209

Awual, M. R. Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem. Eng. J. 2017, 307, 456–465.

210

Naseeruteen, F.; Hamid, N. S. A.; Suah, F. B. M.; Ngah, W. S. W.; Mehamod, F. S. Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads. Int. J. Biol. Macromol. 2018, 107, 1270–1277.

211

Han, Z. Y.; Guo, Z. H.; Zhang, Y.; Xiao, X. Y.; Xu, Z.; Sun, Y. Adsorption-pyrolysis technology for recovering heavy metals in solution using contaminated biomass phytoremediation. Resour. Conservat. Recycl. 2018, 129, 20–26.

212

Mahar, A.; Wang, P.; Ali, A.; Awasthi, M. K.; Lahori, A. H.; Wang, Q.; Li, R. H.; Zhang, Z. Q. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121.

213

Lievens, C.; Yperman, J.; Vangronsveld, J.; Carleer, R. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals. Fuel 2008, 87, 1894–1905.

214

Stals, M.; Thijssen, E.; Vangronsveld, J.; Carleer, R.; Schreurs, S.; Yperman, J. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. J. Anal. Appl. Pyrol. 2010, 87, 1–7.

215

Nassar, N. N. Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. Can. J. Chem. Eng. 2012, 90, 1231–1238.

216

Jafarinejad, S.; Faraji, M.; Norouz, Z.; Mokhtari-Aliabad, J. Application of sulfur-modified magnetic nanoparticles for cadmium removal from aqueous solutions. J. Water Environ. Nanotechnol. 2018, 3, 58–69.

217

Xu, Z. H.; Zhang, D. F.; Chen, W. F.; Li, Y. R.; Yuan, S. J. Nanoscale iron oxides loaded granular activated carbon (GAC-NSIO) for cadmium removal. Desal. Water Treat. 2016, 57, 3559–3571.

218

Zuo, Y.; Chen, G. Q.; Zeng, G. M.; Li, Z. W.; Yan, M.; Chen, A. W.; Guo, Z.; Huang, Z. Z.; Tan, Q. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(Ⅱ) by Phanerochaete chrysosporium in aqueous solutions. J. Hazard. Mater. 2015, 285, 236–244.

219

Vuković, G. D.; Marinković, A. D.; Čolić, M.; Ristić, M. Đ.; Aleksić, R.; Perić-Grujić, A. A.; Uskoković, P. S. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J. 2010, 157, 238–248.

220

Tshwenya, L.; Arotiba, O. A. Ethylenediamine functionalized carbon nanoparticles: Synthesis, characterization, and evaluation for cadmium removal from water. RSC Adv. 2017, 7, 34226–34235.

221

National Nanotechnology Initiative. Benefits and Applications of nanomaterials[Online]. United States: National Nanotechnology Initiative, 2018; https://www.nano.gov/you/nanotechnology-benefits (accessed Oct 8, 2019).

222

Valli, F.; Tijoriwala, K.; Mahapatra, A. Nanotechnology for water purification. Int. J. Nucl. Desalin. 2010, 4, 49–57.

223

Baruah, S.; Dutta, J. Nanotechnology applications in pollution sensing and degradation in agriculture: A review. Environ. Chem. Lett. 2009, 7, 191–204.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 October 2018
Revised: 18 January 2019
Accepted: 20 January 2019
Published: 07 March 2019
Issue date: July 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The authors acknowledge the support made by the R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by the Ministry of Environment (MOE 2018001850001) as well as a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2016R1E1A1A01940995). This work was also supported by "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ014297)" Rural Development Administration, Republic of Korea. V. K. acknowledges the support from the Department of Science and Technology, New Delhi, India, in the form of an INSPIRE Faculty Award.

Return