Journal Home > Volume 12 , Issue 4

Triple-negative breast cancer (TNBC) is one type of the most aggressive breast cancers with poor prognosis. It is of great urgency to develop new therapeutics for treating TNBC. Based on current treatment guideline and genetic information of TNBC, a combinational therapy platform integrating chemotherapy drugs and mRNA encoding tumor suppressor proteins may become an efficacious strategy. In this study, we developed paclitaxel amino lipid (PAL) derived nanoparticles (NPs) to incorporate both chemotherapy drugs and P53 mRNA. The PAL P53 mRNA NPs showed superior properties compared to Abraxane® and Lipusu® used in the clinic including high paclitaxel loading capacity (24 wt.%, calculated by paclitaxel in PAL), PAL encapsulation efficiency (94.7% ± 6.8%) and mRNA encapsulation efficiency (88.7% ± 0.7%). Meanwhile, these NPs displayed synergetic cytotoxicity of paclitaxel and P53 mRNA in cultured TNBC cells. More importantly, we demonstrated in vivo anti-tumor efficacy of PAL P53 mRNA NPs in an orthotopic TNBC mouse model. Overall, these chemotherapy drugs derived mRNA NPs provide a new platform to integrate chemotherapy and personalized medicine using tumor genetic information, and therefore represent a promising approach for TNBC treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chemotherapy drugs derived nanoparticles encapsulating mRNA encoding tumor suppressor proteins to treat triple-negative breast cancer

Show Author's information Chengxiang Zhang1,Xinfu Zhang1, ,§Weiyu Zhao1,,,, ,§Chunxi Zeng1Wenqing Li1Bin Li1Xiao Luo1Junan Li2Justin Jiang1Binbin Deng3David W. McComb3,4Yizhou Dong1,5,6,7,8,9( )
Division of Pharmaceutics & Pharmaceutical Chemistry,College of Pharmacy, The Ohio State University,Columbus,OH 43210,USA;
College of Pharmacy,The Ohio State University,Columbus,OH 43210,USA;
Center for Electron Microscopy and Analysis,The Ohio State University,Columbus,OH 43212,USA;
Department of Materials Science and Engineering,The Ohio State University,Columbus,OH 43210,USA;
Department of Biomedical Engineering,The Ohio State University,Columbus,OH 43210,USA;
The Center for Clinical and Translational Science,The Ohio State University,Columbus,OH 43210,USA;
The Comprehensive Cancer Center,The Ohio State University,Columbus,OH 43210,USA;
Dorothy M. Davis Heart & Lung Research Institute,The Ohio State University,Columbus,OH 43210,USA;
Department of Radiation Oncology,The Ohio State University,Columbus,OH 43210,USA;

Present address: State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China

§ Chengxiang Zhang, Xinfu Zhang, and Weiyu Zhao contributed equally to this work.

Abstract

Triple-negative breast cancer (TNBC) is one type of the most aggressive breast cancers with poor prognosis. It is of great urgency to develop new therapeutics for treating TNBC. Based on current treatment guideline and genetic information of TNBC, a combinational therapy platform integrating chemotherapy drugs and mRNA encoding tumor suppressor proteins may become an efficacious strategy. In this study, we developed paclitaxel amino lipid (PAL) derived nanoparticles (NPs) to incorporate both chemotherapy drugs and P53 mRNA. The PAL P53 mRNA NPs showed superior properties compared to Abraxane® and Lipusu® used in the clinic including high paclitaxel loading capacity (24 wt.%, calculated by paclitaxel in PAL), PAL encapsulation efficiency (94.7% ± 6.8%) and mRNA encapsulation efficiency (88.7% ± 0.7%). Meanwhile, these NPs displayed synergetic cytotoxicity of paclitaxel and P53 mRNA in cultured TNBC cells. More importantly, we demonstrated in vivo anti-tumor efficacy of PAL P53 mRNA NPs in an orthotopic TNBC mouse model. Overall, these chemotherapy drugs derived mRNA NPs provide a new platform to integrate chemotherapy and personalized medicine using tumor genetic information, and therefore represent a promising approach for TNBC treatment.

Keywords: combination therapy, paclitaxel amino lipid derived nanoparticles, mRNA therapeutics, triple-negative breast cancer

References(42)

1

Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer—The road to new treatment strategies. Lancet 2017, 389, 2430–2442.

2

The National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Breast Cancer (Version I. 2018-March 20, 2018)[Online]. 2018; https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf (accessed Jun 1, 2018).

3

Bianchini, G.; Balko, J. M.; Mayer, I. A.; Sanders, M. E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 2016, 13, 674–690.

4

Mehta, R. S.; Barlow, W. E.; Albain, K. S.; Vandenberg, T. A.; Dakhil, S. R.; Tirumali, N. R.; Lew, D. L.; Hayes, D. F.; Gralow, J. R.; Livingston, R. B. et al. Combination anastrozole and fulvestrant in metastatic breast cancer. N. Engl. J. Med. 2012, 367, 435–444.

5

Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M. J.; Powell, S. F. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 2018, 378, 2078–2092.

6

Schmid, P.; Park, Y. H.; Muñoz-Couselo, E.; Kim, S. B.; Sohn, J.; Im, S. A.; Holgado, E.; Wang, Y.; Dang, T.; Aktan, G. et al. Pembrolizumab (pembro) + chemotherapy (chemo) as neoadjuvant treatment for triple negative breast cancer (TNBC): Preliminary results from KEYNOTE-173. J. Clin. Oncol. 2017, 35, 556–556.

7

Wang, Y. W.; Sun S. Y.; Zhang, Z. Y.; Shi D. L. Nanomaterials for cancer precision medicine. Adv. Mater. 2018, 30, 1705660.

8

Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70.

9

Morris, L. G. T.; Chan, T. A. Therapeutic targeting of tumor suppressor genes. Cancer 2015, 121, 1357–1368.

10

Bae, Y. H.; Shin, J. M.; Park, H. J.; Jang, H. O.; Bae, M. K.; Bae, S. K. Gain-of-function mutant p53-R280K mediates survival of breast cancer cells. Genes Genomics 2014, 36, 171–178.

11

Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics—Developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780.

12

Weissman, D. mRNA transcript therapy. Expert Rev. Vaccines 2015, 14, 265–281.

13

Yamamoto, A.; Kormann, M.; Rosenecker, J.; Rudolph, C. Current prospects for mRNA gene delivery. Eur. J. Pharm. Biopharm. 2009, 71, 484–489.

14

Islam, M. A.; Reesor, E. K. G.; Xu, Y. J.; Zope, H. R.; Zetter, B. R.; Shi, J. J. Biomaterials for mRNA delivery. Biomater. Sci. 2015, 3, 1519–1533.

15

Guan, S.; Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017, 24, 133–143.

16

Hajj, K. A.; Whitehead, K. A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056.

17

Li, B.; Zhang, X. F.; Dong, Y. Z. Nanoscale platforms for messenger RNA delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, e1530.

18

Liu, L. N.; Wang, Y. H.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 2018, 26, 45–55.

19

Islam, M. A.; Xu, Y. J.; Tao, W.; Ubellacker, J. M.; Lim, M.; Aum, D.; Lee, G. Y.; Zhou, K.; Zope, H.; Yu, M. et al. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat. Biomed. Eng. 2018, 2, 850–864.

20

Haabeth, O. A. W.; Blake, T. R.; McKinlay, C. J.; Waymouth, R. M.; Wender, P. A.; Levy, R. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc. Natl. Acad. Sci. USA 2018, 115, E9153–E9161.

21

Van Hoecke, L.; Van Lint, S.; Roose, K.; Van Parys, A.; Vandenabeele, P.; Grooten, J.; Tavernier, J.; De Koker, S.; Saelens, X. Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat. Commun. 2018, 9, 3417.

22

Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401.

23

Oberli, M. A.; Reichmuth, A. M.; Dorkin, J. R.; Mitchell, M. J.; Fenton, O. S.; Jaklenec, A.; Anderson, D. G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017, 17, 1326–1335.

24

Cheng, Q.; Wei, T.; Jia, Y. M.; Farbiak, L.; Zhou, K. J.; Zhang, S. Y.; Wei, Y. L.; Zhu, H.; Siegwart, D. J. Dendrimer-based lipid nanoparticles deliver therapeutic FAH mRNA to normalize liver function and extend survival in a mouse model of hepatorenal tyrosinemia type I. Adv. Mater. 2018, 30, 1805308.

25

Miller, J. B.; Zhang, S. Y.; Kos, P.; Xiong, H.; Zhou, K. J.; Perelman, S. S.; Zhu, H.; Siegwart, D. J. Non-Viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem., Int. Ed. 2017, 56, 1059–1063.

26

Robinson, E.; MacDonald, K. D.; Slaughter, K.; McKinney, M.; Patel, S.; Sun, C.; Sahay, G. Lipid nanoparticle-delivered chemically modified mRNA Restores chloride secretion in cystic fibrosis. Mol. Ther. 2018, 26, 2034–2046.

27

Gurnani, M.; Lipari, P.; Dell, J.; Shi, B.; Nielsen, L. L. Adenovirus- mediated p53 gene therapy has greater efficacy when combined with chemotherapy against human head and neck, ovarian, prostate, and breast cancer. Cancer Chemother. Pharmacol. 1999, 44, 143–151.

28

Jiang, C.; Mei, M.; Li, B.; Zhu, X. R.; Zu, W. H.; Tian, Y. J.; Wang, Q. N.; Guo, Y.; Dong, Y. Z.; Tan, X. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017, 27, 440–443.

29

Jia, L. Nanoparticle formulation increases oral bioavailability of poorly soluble drugs: Approaches, experimental evidences and theory. Curr. Nanosci. 2005, 1, 237–243.

30

Doane, T.; Burda, C. Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 607–621.

31

Sofias, A. M.; Dunne, M.; Storm, G.; Allen, C. The battle of "nano" paclitaxel. Adv. Drug Deliv. Rev. 2017, 122, 20–30.

32

Ye, L.; He, J.; Hu, Z. P.; Dong, Q. J.; Wang, H. B.; Fu, F. H.; Tian, J. W. Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts. Food Chem. Toxicol. 2013, 52, 200–206.

33

Oudin, M. J.; Barbier, L.; Schäfer, C.; Kosciuk, T.; Miller, M. A.; Han, S.; Jonas, O.; Lauffenburger, D. A.; Gertler, F. B. MENA confers resistance to paclitaxel in triple-negative breast cancer. Mol. Cancer Ther. 2017, 16, 143–155.

34

Conley, S. J.; Baker, T. L.; Burnett, J. P.; Theisen, R. L.; Lazarus, D.; Peters, C. G.; Clouthier, S. G.; Eliasof, S.; Wicha, M. S. CRLX101, an investigational camptothecin-containing nanoparticle-drug conjugate, targets cancer stem cells and impedes resistance to antiangiogenic therapy in mouse models of breast cancer. Breast Cancer Res. Treat. 2015, 150, 559–567.

35

Li, B.; Luo, X.; Deng, B. B.; Wang, J. F.; McComb, D. W.; Shi, Y. M.; Gaensler, K. M. L.; Tan, X.; Dunn, A. L.; Kerlin, B. A. et al. An Orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015, 15, 8099–8107.

36

Zhang, X. F.; Li, B.; Luo, X.; Zhao, W. Y.; Jiang, J.; Zhang, C. X.; Gao, M.; Chen, X. F.; Dong, Y. Z. Biodegradable amino-ester nanomaterials for Cas9 mRNA delivery in vitro and in vivo. ACS Appl. Mater. Interfaces 2017, 9, 25481–25487.

37

Li, B.; Luo, X.; Deng, B. B.; Giancola, J. B.; McComb, D. W.; Schmittgen, T. D.; Dong, Y. Z. Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Sci. Rep. 2016, 6, 22137.

38

Muller, P. A. J.; Vousden, K. H. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell 2014, 25, 304–317.

39

Weiss, R. B.; Donehower, R. C.; Wiernik, P. H.; Ohnuma, T.; Gralla, R. J.; Trump, D. L.; Baker, J. R. B. Jr.; Van Echo, D. A.; Von Hoff, D. D.; Leyland-Jones, B. Hypersensitivity reactions from taxol. J. Clin. Oncol. 1990, 8, 1263–1268.

40

Balaji, B. S.; Lewis, M. R. Double exponential growth of aliphatic polyamide dendrimers via AB2 hypermonomer strategy. Chem. Commun. (Camb. ) 2009, 4593–4595.

41

Gjoerup, O.; Zaveri, D.; Roberts, T. M. Induction of p53-independent apoptosis by simian virus 40 small t antigen. J. Virol. 2001, 75, 9142– 9155.

42

Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of lipid nanoparticle formulations for mRNA Delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015, 15, 7300–7306.

File
12274_2019_2308_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 December 2018
Revised: 17 January 2019
Accepted: 20 January 2019
Published: 01 February 2019
Issue date: April 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was supported by the Maximizing Investigators' Research Award R35GM119679 from the National Institute of General Medical Sciences as well as the start-up fund from the College of Pharmacy at The Ohio State University. C. X. Z. acknowledges the support from the Professor Sylvan G. Frank Graduate Fellowship.

Return