Journal Home > Volume 12 , Issue 6

Organic-based electrode materials for lithium-ion batteries (LIBs) are promising due to their high theoretical capacity, structure versatility and environmental benignity. However, the poor intrinsic electric conductivity of most polymers results in slow reaction kinetics and hinders their application as electrode materials for LIBs. A binder-free self-supporting organic electrode with excellent redox kinetics is herein demonstrated via in situ polymerization of a uniform thin polyimide (PI) layer on a porous and highly conductive carbonized nanofiber (CNF) framework. The PI active material in the porous PI@CNF film has large physical contact area with both the CNF and the electrolyte thus obtains superior electronic and ionic conduction. As a result, the PI@CNF cathode exhibits a discharge capacity of 170 mAh·g-1 at 1 C (175 mA·g-1), remarkable rate-performance (70.5% of 0.5 C capacity can be obtained at a 100 C discharge rate), and superior cycling stability with 81.3% capacity retention after 1, 000 cycles at 1 C. Last but not least, a four-electron transfer redox process of the PI polymer was realized for the first time thanks to the excellent redox kinetics of the PI@CNF electrode, showing a discharge capacity exceeding 300 mAh·g-1 at a current of 175 mA·g-1.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A polyimide cathode with superior stability and rate capability for lithium-ion batteries

Show Author's information Jianghui Zhao1,2Tuo Kang2Yanli Chu1,2Peng Chen2Feng Jin1,2Yanbin Shen1,2( )Liwei Chen2,3( )
School of Nano Technology and Nano Bionics,University of Science and Technology of China,Hefei,230026,China;
i-Lab,CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences,Suzhou,215123,China;
School of Chemistry and Chemical Engineering,Shanghai Jiaotong University,Shanghai,200240,China;

Abstract

Organic-based electrode materials for lithium-ion batteries (LIBs) are promising due to their high theoretical capacity, structure versatility and environmental benignity. However, the poor intrinsic electric conductivity of most polymers results in slow reaction kinetics and hinders their application as electrode materials for LIBs. A binder-free self-supporting organic electrode with excellent redox kinetics is herein demonstrated via in situ polymerization of a uniform thin polyimide (PI) layer on a porous and highly conductive carbonized nanofiber (CNF) framework. The PI active material in the porous PI@CNF film has large physical contact area with both the CNF and the electrolyte thus obtains superior electronic and ionic conduction. As a result, the PI@CNF cathode exhibits a discharge capacity of 170 mAh·g-1 at 1 C (175 mA·g-1), remarkable rate-performance (70.5% of 0.5 C capacity can be obtained at a 100 C discharge rate), and superior cycling stability with 81.3% capacity retention after 1, 000 cycles at 1 C. Last but not least, a four-electron transfer redox process of the PI polymer was realized for the first time thanks to the excellent redox kinetics of the PI@CNF electrode, showing a discharge capacity exceeding 300 mAh·g-1 at a current of 175 mA·g-1.

Keywords: polyimide, lithium-ion batteries, rate capability, carbonized nanofibers, organic electrode material

References(30)

1

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.

2

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.

3

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.

4

Liang, Y. L.; Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2018, 2, 1690-1706.

5

Song, Z. P.; Zhou, H. S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials. Energy Environ. Sci. 2013, 6, 2280-2301.

6

Liang, Y. L.; Tao, Z. L.; Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2012, 2, 742-769.

7

Muench, S.; Wild, A.; Friebe, C.; Haupler, B.; Janoschka, T.; Schubert, U. S. Polymer-based organic batteries. Chem. Rev. 2016, 116, 9438-9484.

8

Shi, Y.; Peng, L. L.; Ding, Y.; Zhao, Y.; Yu, G. H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684-6696.

9

Novák, P.; Müller, K.; Santhanam, K. S. V.; Haas, O. Electrochemically active polymers for rechargeable batteries. Chem. Rev. 1997, 97, 207-282.

10

Ohzuku, T.; Brodd, R. J. An overview of positive-electrode materials for advanced lithium-ion batteries. J. Power Sources 2007, 174, 449-456.

11

Liang, Y. L.; Zhang, P.; Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 2013, 4, 1330-1337.

12

Wu, H. P.; Shevlin, S. A.; Meng, Q. H.; Guo, W.; Meng, Y. N.; Lu, K.; Wei, Z. X.; Guo, Z. X. Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv. Mater. 2014, 26, 3338-3343.

13

Oyaizu, K.; Hatemata, A.; Choi, W.; Nishide, H. Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: Expanding the functional horizon of polyimides. J. Mater. Chem. 2010, 20, 5404-5410.

14

Chopin, S.; Chaignon, F.; Blart, E.; Odobel, F. Syntheses and properties of core-substituted naphthalene bisimides with aryl ethynyl or cyano groups. J. Mater. Chem. 2007, 17, 4139-4146.

15

Song, Z. P.; Zhan, H.; Zhou, Y. H. Polyimides: Promising energy-storage materials. Angew. Chem., Int. Ed. 2010, 49, 8444-8448.

16

Zhang, C.; Lu, C. B.; Zhang, F.; Qiu, F.; Zhuang, X. D.; Feng, X. L. Two-dimensional organic cathode materials for alkali-metal-ion batteries. J. Energy Chem. 2018, 27, 86-98.

17

Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.

18

Peng, S. J.; Li, L. L.; Kong Yoong Lee, J.; Tian, L. L.; Srinivasan, M.; Adams, S.; Ramakrishna, S. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 2016, 22, 361-395.

19

Xu, Y. H.; Zhu, Y. J.; Han, F. D.; Luo, C.; Wang, C. S. 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries. Adv. Energy Mater. 2015, 5, 1400753.

20

Zhang, P.; Shao, C. L.; Zhang, Z. Y.; Zhang, M. Y.; Mu, J. B.; Guo, Z. C.; Liu, Y. C. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 2011, 3, 3357-3363.

21

Li, B.; Yang, S. B.; Li, S. M.; Wang, B.; Liu, J. H. From commercial sponge toward 3D graphene-silicon networks for superior lithium storage. Adv. Energy Mater. 2015, 5, 1500289.

22

Kim, S. J.; Kim, M. C.; Han, S. B.; Lee, G. H.; Choe, H. S.; Kwak, D. H.; Choi, S. Y.; Son, B. G.; Shin, M. S.; Park, K. W. 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries. Nano Energy 2016, 27, 545-553.

23

Li, Q. T.; Yang, X. J.; Chen, W. Q.; Yi, C. F.; Xu, Z. S. Preparation of poly(amic acid) and polyimide via microwave-assisted polycondensation of aromatic dianhydrides and diamines. Macromol. Symp. 2008, 261, 148-156.

24

Wang, H. J.; Wang, T. P.; Yang, S. Y.; Fan, L. Preparation of thermal stable porous polyimide membranes by phase inversion process for lithium-ion battery. Polymer 2013, 54, 6339-6348.

25

Snyder, R. W.; Thomson, B.; Bartges, B.; Czerniawski, D.; Painter, P. C. FTIR studies of polyimides: Thermal curing. Macromolecules 1989, 22, 4166-4172.

26

Zhang, B.; Yu, Y.; Huang, Z. D.; He, Y. B.; Jang, D.; Yoon, W. S.; Mai, Y. W.; Kang, F.; Kim, J. K. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles. Energy Environ. Sci. 2012, 5, 9895-9902.

27

Song, Z. P.; Xu, T.; Gordin, M. L.; Jiang, Y. B.; Bae, I. T.; Xiao, Q. F.; Zhan, H.; Liu, J.; Wang, D. H. Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 2012, 12, 2205-2211.

28

Cañas, N. A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K. A.; Hiesgen, R. Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy. Electrochim. Acta 2013, 97, 42-51.

29

Han, X.; Chang, C.; Yuan, L.; Sun, T.; Sun, J. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 2007, 19, 1616-1621.

30

Han, X. Y.; Qing, G. Y.; Sun, J. T.; Sun, T. L. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew. Chem., Int. Ed. 2012, 51, 5147-5151.

Video
12274_2019_2306_MOESM1_ESM.mp4
File
12274_2019_2306_MOESM2_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 December 2018
Revised: 15 January 2019
Accepted: 17 January 2019
Published: 29 May 2019
Issue date: June 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

This work was financially supported by the "Strategic Priority Research Program" of the CAS (No. XDA09010600) and the National Natural Science Foundation of China (Nos. 21473242, 21625304 and 21733012).

Return