AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform

Xueyao Liu1Wendong Liu2Bai Yang1( )
State Key Laboratory of Supramolecular Structure and Materials,College of Chemistry, Jilin University,Changchun,130012,China;
Max Planck Institute for Polymer Research, Ackermannweg 10,D-55128 Mainz, Rheinland-Pfalz,Germany; , ,
Show Author Information

Graphical Abstract

Abstract

Elliptical metallic nanohole arrays possess much higher transmission and enhanced sensitivity compared with circular nanohole arrays. However, fabricating elliptical metallic nanohole arrays in large area with highly tunable aspect ratio remains a challenge. Herein, a brand-new method combining stretchable imprinting with colloidal lithography is figured out to fabricate deep-elliptical-silver-nanowell arrays (d-EAgNWAs). In this method, large area highly ordered silicon nanopillar arrays fabricated by colloidal lithography were taken as a master to transfer large area polydimethylsiloxane (PDMS) nanohole arrays. Benefit from the high elasticity of PDMS mold, the aspect ratio of d-EAgNWAs achieved can be facilely regulated from 1.7 to 5.0. Through optimization of polarization direction and the structural parameters including nanowell depth, aspect ratio, and hole size, the sensing performance of d-EAgNWAs was finally improved up to 1, 414.1 nm/RIU. The best sensing behaved d-EAgNWAs were employed as an immunoassay platform finally to prove their great potential in label-free biosensing.

Electronic Supplementary Material

Download File(s)
12274_2019_2302_MOESM1_ESM.pdf (3.2 MB)

References

1

Sun, J.; Li, Z. Y.; Sun, Y. H.; Zhong, L. B.; Huang, J.; Zhang, J. C.; Liang, Z. Q.; Chen, J. M.; Jiang, L. Uniform and reproducible plasmon-enhanced fluorescence substrate based on PMMA-coated, large-area Au@Ag nanorod arrays. Nano Res. 2018, 11, 953–965.

2

Yang, P. P.; Zheng, J. Z.; Xu, Y.; Zhang, Q.; Jiang, L. Colloidal synthesis and applications of plasmonic metal nanoparticles. Adv. Mater. 2016, 28, 10508–10517.

3

Baldassarre, L.; Sakat, E.; Frigerio, J.; Samarelli, A.; Gallacher, K.; Calandrini, E.; Isella, G.; Paul, D. J.; Ortolani, M.; Biagioni, P. Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates. Nano Lett. 2015, 15, 7225–7231.

4

Ma, R. M.; Ota, S.; Li, Y. M.; Yang, S.; Zhang, X. Explosives detection in a lasing plasmon nanocavity. Nat. Nanotechnol. 2014, 9, 600–604.

5

Li, D.; Song, S. P.; Fan, C. H. Target-responsive structural switching for nucleic acid-based sensors. Acc. Chem. Res. 2010, 43, 631–641.

6

Du, J. J.; Jiang, J.; Shao, Q.; Liu, X. G.; Marks, R. S.; Ma, J.; Chen, X. D. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 2013, 9, 1467–1481.

7

Yanik, A. A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T. W.; Connor, J. H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010, 10, 4962–4969.

8

Brolo, A. G. Plasmonics for future biosensors. Nat. Photonics 2012, 6, 709–713.

9

Guo, L. H.; Jackman, J. A.; Yang, H. H.; Chen, P.; Cho, N. J.; Kim, D. H. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 2015, 10, 213–239.

10

Kabashin, A. V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G. A.; Atkinson, R.; Pollard, R.; Podolskiy, V. A.; Zayats, A. V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871.

11

Wu, C. H.; Khanikaev, A. B.; Adato, R.; Arju, N.; Yanik, A. A.; Altug, H.; Shvets, G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 2012, 11, 69–75.

12

Stockman, M. I. Nanoplasmonic sensing and detection. Science 2015, 348, 287–288.

13

Jin Y. D. Engineering plasmonic gold nanostructures and metamaterials for biosensing and nanomedicine. Adv. Mater. 2012, 24, 5153–5165.

14

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

15

Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

16

Zeng, S. W.; Baillargeat, D.; Hod, H. P.; Yong, K. T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452.

17

Jiang, L.; Chen, X. D.; Lu, N.; Chi, L. F. Spatially confined assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 3009–3017.

18

Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636.

19

Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. A new generation of sensors based on extraordinary optical transmission. Acc. Chem. Res. 2008, 41, 1049–1057.

20

Ye, S. S.; Zhang, X. M.; Chang, L. X.; Wang, T. Q.; Li, Z. B.; Zhang, J. H.; Yang, B. High-performance plasmonic sensors based on two-dimensional Ag nanowell crystals. Adv. Opt. Mater. 2014, 2, 779–787.

21

Im, H.; Lindquist, N. C.; Lesuffleur, A.; Oh, S. H. Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. ACS Nano 2010, 4, 947–954.

22

Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

23

Yanik, A. A.; Cetin, A. E.; Huang, M.; Artar, A.; Mousavi, S. H.; Khanikaev, A.; Connor, J. H.; Shvets, G.; Altug, H. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA 2011, 108, 11784–11789.

24

Rindzevicius, T.; Alaverdyan, Y.; Dahlin, A.; Höök, F.; Sutherland, D. S.; Käll, M. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005, 5, 2335–2339.

25

Wu, L. Y.; Ross, B. M.; Lee, L. P. Optical properties of the crescent- shaped nanohole antenna. Nano Lett. 2009, 9, 1956–1961.

26

Bukasov, R.; Shumaker-Parry, J. S. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 2007, 7, 1113–1118.

27

Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010, 10, 2342–2348.

28

Zhang, Y.; Zhen, Y. R.; Neumann, O.; Day, J. K.; Nordlander, P, ; Halas, N. J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 2014, 5, 4424.

29

Yang, S. C.; Hou, J. L.; Finn, A.; Kumar, A.; Ge, Y.; Fischer, W. J. Synthesis of multifunctional plasmonic nanopillar array using soft thermal nanoimprint lithography for highly sensitive refractive index sensing. Nanoscale 2015, 7, 5760–5766.

30

Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669.

31

Li, J.; Iu, H.; Wan, J. T. K.; Ong, H. C. The plasmonic properties of elliptical metallic hole arrays. Appl. Phys. Lett. 2009, 94, 033101.

32

Cervantes Tellez, G. A.; Hassan, S.; Tait, R. N.; Berini, P.; Gordon, R. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing. Lab Chip 2013, 13, 2541–2546.

33

Kang, L.; Lan, S. F.; Cui, Y. H.; Rodrigues, S. P.; Liu, Y. M.; Werner, D. H.; Cai, W. S. An active metamaterial platform for chiral responsive optoelectronics. Adv. Mater. 2015, 27, 4377–4383.

34

Gordon, R.; Hughes, M.; Leathem, B.; Kavanagh, K. L.; Brolo, A. G. Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film. Nano Lett. 2005, 5, 1243–1246.

35

Lovera, P.; Jones, D.; Corbett, B.; O'Riordan, A. Polarization tunable transmission through plasmonic arrays of elliptical nanopores. Opt. Express 2012, 20, 25325–25332.

36

Gordon, R.; Brolo, A. G.; McKinnon, A.; Rajora, A.; Leathem, B.; Kavanagh, K. L. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 2004, 92, 037401.

37

Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 2010, 22, 4249–4269.

38

Fredriksson, H.; Alaverdyan, Y.; Dmitriev, A.; Langhammer, C.; Sutherland, D. S.; Zäch, M.; Kasemo, B. Hole–mask colloidal lithography. Adv. Mater. 2007, 19, 4297–4302.

39

Larsson, E. M.; Alegret, J.; Käll, M.; Sutherland, D. S. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256–1263.

40

Langhammer, C.; Schwind, M.; Kasemo, B.; Zorić, I. Localized surface Plasmon resonances in aluminum nanodisks. Nano Lett. 2008, 8, 1461–1471.

41

Li, Y. F.; Zhang, J. H.; Yang, B. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today 2010, 5, 117–127.

42

Choi, D. G.; Yu, H. K.; Jang, S. G.; Yang, S. M. Colloidal lithographic nanopatterning via reactive ion etching. J. Am. Chem. Soc. 2004, 126, 7019–7025.

43

Li, Y.; Duan, G. T.; Liu, G. Q.; Cai, W. P. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: Fabrication and applications. Chem. Soc. Rev. 2013, 42, 3614–3627.

44

Lee, S. H.; Bantz, K. C.; Lindquist, N. C.; Oh, S. H.; Haynes, C. L. Self- assembled plasmonic nanohole arrays. Langmuir 2009, 25, 13685–13693.

45

Ai, B.; Basnet, P.; Larson, S.; Ingram, W.; Zhao, Y. P. Plasmonic sensor with high figure of merit based on differential polarization spectra of elliptical nanohole array. Nanoscale 2017, 9, 14710–14721.

46

Chang, Y. C.; Lu, S. C.; Chung, H. C.; Wang, S. M.; Tsai, T. D.; Guo, T. F. High-throughput nanofabrication of infra-red and chiral metamaterials using nanospherical-lens lithography. Sci. Rep. 2013, 3, 3339.

47

Wang, T. Q.; Li, X.; Zhang, J. H.; Ren, Z. Y.; Zhang, X. M.; Zhang, X.; Zhu, D. F.; Wang, Z. H.; Han, F.; Wang, X. Z. et al. Morphology-controlled two-dimensional elliptical hemisphere arrays fabricated by a colloidal crystal based micromolding method. J. Mater. Chem. 2010, 20, 152–158.

48

Cai, Y. J.; Li, Y.; Nordlander, P.; Cremer P. S. Fabrication of elliptical nanorings with highly tunable and multiple plasmonic resonances. Nano Lett. 2012, 12, 4881–4888.

49

Liu, X. Y.; Liu, W. D.; Fang, L. P.; Ye, S. S.; Shen, H. Z.; Yang, B. Highly sensitive deep-silver-nanowell arrays (d-AgNWAs) for refractometric sensing. Nano Res. 2017, 10, 908–921.

50

Si, S. R.; Liang, W. K.; Sun, Y. H.; Huang, J.; Ma, W. L.; Liang, Z. Q.; Bao, Q. L.; Jiang, L. Facile fabrication of high-density sub-1-nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv. Funct. Mater. 2016, 26, 8137–8145.

51

Chen, J. M.; Sun, Y. H.; Zhong, L. B.; Shao, W. J.; Huang, J.; Liang, F.; Cui, Z. Q.; Liang, Z. Q.; Jiang, L.; Chi, L. F. Scalable fabrication of multiplexed plasmonic nanoparticle structures based on AFM lithography. Small 2016, 12, 5818–5825.

52

Fang, Z. Y.; Cai, J. Y.; Yan, Z. B.; Nordlander, P.; Halas, N. J.; Zhu, X. Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett. 2011, 11, 4475–4479.

53

Valsecchi, C.; Brolo, A. G. Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 2013, 29, 5638–5649.

54

McFarland, A. D.; Van Duyne, R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003, 3, 1057–1062.

55

Kumari, S.; Moirangthem, R. S. Portable and economical plasmonic capillary sensor for biomolecular detection. Sens. Actuators B Chem. 2016, 231, 203–210.

56

Abadeer, N. S.; Fülöp, G.; Chen, S.; Käll, M.; Murphy, C. J. Interactions of bacterial lipopolysaccharides with gold nanorod surfaces investigated by refractometric sensing. ACS Appl. Mater. Interfaces 2015, 7, 24915– 24925.

57

Jeong, H. H.; Mark, A. G.; Alarcón-Correa, M.; Kim, I.; Oswald, P.; Lee, T. C.; Fischer, P. Dispersion and shape engineered plasmonic nanosensors. Nat. Commun. 2016, 7, 11331.

58

Lisboa, P.; Valsesia, A.; Mannelli, I.; Mornet, S.; Colpo, P.; Rossi, F. Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols. Adv. Mater. 2008, 20, 2352–2358.

Nano Research
Pages 845-853
Cite this article:
Liu X, Liu W, Yang B. Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform. Nano Research, 2019, 12(4): 845-853. https://doi.org/10.1007/s12274-019-2302-2
Topics:

652

Views

6

Crossref

N/A

Web of Science

6

Scopus

2

CSCD

Altmetrics

Received: 23 August 2018
Revised: 16 January 2019
Accepted: 16 January 2019
Published: 01 February 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return