Journal Home > Volume 12 , Issue 6

A strategy has been developed for analyzing growth kinetics of colloidal metal nanoparticle quantitatively by focusing both the very early and the very late growth stages, at which the size of growing nanoparticles and the reaction time follow linear functions. Applying this extreme-condition model to a microwave-assistant synthesis of colloidal silver nanoparticles, for the first time, results in the determination of intrinsic kinetics parameters involving in the growth of the silver nanoparticles. The diffusion coefficient (D) of the precursor species containing Ag+ is 4.9 × 10–14 m2/s and the surface reaction rate constant (k) of the precursor species on the surface of the growing silver nanoparticles is 8.7 × 10–8 m/s in an ethylene glycol solution containing 0.15 M polyvinylpyrrolidone at 140 ℃. The extreme-condition model is ready to deconvolute the intrinsic kinetics parameters of growing colloidal nanoparticles once the enlargement rate of the nanoparticles can be experimentally measured in real time and with high temporal resolution. Availability of the high-fidelity values of k and D will provide the crucial information to guide the design and synthesis of colloidal metal nanoparticles with the desirable properties.


menu
Abstract
Full text
Outline
About this article

An extreme-condition model for quantifying growth kinetics of colloidal metal nanoparticles

Show Author's information Siyu WuYugang Sun( )
Department of Chemistry,Temple University, 1901 North 13th Street,Philadelphia, Pennsylvania,19122,USA;

Abstract

A strategy has been developed for analyzing growth kinetics of colloidal metal nanoparticle quantitatively by focusing both the very early and the very late growth stages, at which the size of growing nanoparticles and the reaction time follow linear functions. Applying this extreme-condition model to a microwave-assistant synthesis of colloidal silver nanoparticles, for the first time, results in the determination of intrinsic kinetics parameters involving in the growth of the silver nanoparticles. The diffusion coefficient (D) of the precursor species containing Ag+ is 4.9 × 10–14 m2/s and the surface reaction rate constant (k) of the precursor species on the surface of the growing silver nanoparticles is 8.7 × 10–8 m/s in an ethylene glycol solution containing 0.15 M polyvinylpyrrolidone at 140 ℃. The extreme-condition model is ready to deconvolute the intrinsic kinetics parameters of growing colloidal nanoparticles once the enlargement rate of the nanoparticles can be experimentally measured in real time and with high temporal resolution. Availability of the high-fidelity values of k and D will provide the crucial information to guide the design and synthesis of colloidal metal nanoparticles with the desirable properties.

Keywords: growth kinetics of colloidal nanoparticles, quantitative model, extreme-condition fitting, precursor diffusion, surface reaction of precursor

References(40)

1

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60-103.

2

Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891-895.

3

Talapin, D. V.; Shevchenko, E. V. Introduction: Nanoparticle chemistry. Chem. Rev. 2016, 116, 10343-10345.

4

Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623-10730.

5

Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934-10982.

6

Sugimoto, T. Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987, 28, 65-108.

7

LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847-4854.

8

Sugimoto, T. Monodispersed Particles; Elsevier: Amsterdam, 2001.

DOI
9

Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610-7630.

10

Sun, Y. G.; Ren, Y. In situ synchrotron X-ray techniques for real-time probing of colloidal nanoparticle synthesis. Part. Part. Syst. Charact. 2013, 30, 399-419.

11

Hu, Q.; Zhao, L. C.; Wu, J.; Gao, K.; Luo, D. Y.; Jiang, Y. F.; Zhang, Z. Y.; Zhu, C. H.; Schaible, E.; Hexemer, A. et al. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from[PbI6]4- cage nanoparticles. Nat. Commun. 2017, 8, 15688.

12

Polte, J.; Ahner, T. T.; Delissen, F.; Sokolov, S.; Emmerling, F.; Thünemann, A. F.; Kraehnert, R. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc. 2010, 132, 1296-1301.

13

Kwon, S. G.; Krylova, G.; Phillips, P. J.; Klie, R. F.; Chattopadhyay, S.; Shibata, T.; Bunel, E. E.; Liu, Y. Z.; Prakapenka, V. B.; Lee, B. et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 2015, 14, 215-223.

14

Abécassis, B.; Bouet, C.; Garnero, C.; Constantin, D.; Lequeux, N.; Ithurria, S.; Dubertret, B.; Pauw, B. R.; Pontoni, D. Real-time in situ probing of high-temperature quantum dots solution synthesis. Nano Lett. 2015, 15, 2620-2626.

15

Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309-1312.

16

Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61-64.

17

De Yoreo, J. J.; Sommerdijk, N. A. J. M. Investigating materials formation with liquid-phase and cryogenic TEM. Nat. Rev. Mater. 2016, 1, 16035.

18

Shen, X. C.; Zhang, C. L.; Zhang, S. Y.; Dai, S.; Zhang, G. H.; Ge, M. Y.; Pan, Y. B.; Sharkey, S. M.; Graham, G. W.; Hunt, A. et al. Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nat. Commun. 2018, 9, 4485.

19

Sun, Y. G.; Zuo, X. B.; Sankaranarayanan, S. K. R. S.; Peng, S.; Narayanan, B.; Kamath, G. Quantitative 3D evolution of colloidal nanoparticle oxidation in solution. Science 2017, 356, 303-307.

20

Bullen, C. R.; Mulvaney, P. Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nano Lett. 2004, 4, 2303-2307.

21

Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007, 19, 548-552.

22

Park, K.; Drummy, L. F.; Wadams, R. C.; Koerner, H.; Nepal, D.; Fabris, L.; Vaia, R. A. Growth mechanism of gold nanorods. Chem. Mater. 2013, 25, 555-563.

23

Larsson, E. M.; Millet, J.; Gustafsson, S.; Skoglundh, M.; Zhdanov, V. P.; Langhammer, C. Real time indirect nanoplasmonic in situ spectroscopy of catalyst nanoparticle sintering. ACS Catal. 2012, 2, 238-245.

24

Liu, Y.; Huang, C. Z. Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys. ACS Nano 2013, 7, 11026-11034.

25

Su, H. P.; Dixon, J. D.; Wang, A. Y.; Low, J.; Xu, J.; Wang, J. K. Study on growth kinetics of CdSe nanocrystals with a new model. Nanoscale Res. Lett. 2010, 5, 823-828.

26

Rempel, J. Y.; Bawendi, M. G.; Jensen, K. F. Insights into the kinetics of semiconductor nanocrystal nucleation and growth. J. Am. Chem. Soc. 2009, 131, 4479-4489.

27

Varghese, N.; Biswas, K.; Rao, C. N. R. Investigations of the growth kinetics of capped CdSe and CdS nanocrystals by a combined use of small angle X-ray scattering and other techniques. Chem. Asian J. 2008, 3, 1435-1442.

28

Talapin, D. V.; Rogach, A. L.; Haase, M.; Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 2001, 105, 12278-12285.

29

Liu, Q.; Gao, M. R.; Liu, Y. Z.; Okasinski, J. S.; Ren, Y.; Sun, Y. G. Quantifying the nucleation and growth kinetics of microwave nanochemistry enabled by in situ high-energy x-ray scattering. Nano Lett. 2016, 16, 715-720.

30

Peng, S.; Okasinski, J. S.; Almer, J. D.; Ren, Y.; Wang, L.; Yang, W. G.; Sun, Y. G. Real-time probing of the synthesis of colloidal silver nanocubes with time-resolved high-energy synchrotron X-ray diffraction. J. Phys. Chem. C 2012, 116, 11842-11847.

31

La Mer, V. K. Nucleation in phase transitions. Ind. Eng. Chem. 1952, 44, 1270-1277.

32

Ostwald, W. Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z. Phys. Chem. 1900, 34, 495-503.

33

Lifshitz, I. M.; Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35-50.

34

Wagner, C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochem 1961, 65, 581-591.

35

Watzky, M. A.; Finke, R. G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: Slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc. 1997, 119, 10382-10400.

36

Biskup, M.; Chayes, L.; Kotecký, R. A proof of the Gibbs-Thomson formula in the droplet formation regime. J. Stat. Phys. 2004, 116, 175-203.

37

Borchert, H.; Shevchenko, E. V.; Robert, A.; Mekis, I.; Kornowski, A.; Grübel, G.; Weller, H. Determination of nanocrystal sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir 2005, 21, 1931-1936.

38

Pabisch, S.; Feichtenschlager, B.; Kickelbick, G.; Peterlik, H. Effect of interparticle interactions on size determination of zirconia and silica based systems-A comparison of SAXS, DLS, BET, XRD and TEM. Chem. Phys. Lett. 2012, 521, 91-97.

39

Sun, Y. G. Watching nanoparticle kinetics in liquid. Mater. Today 2012, 15, 140-147.

40

Özkar, S.; Finke, R. G. Silver nanoparticles synthesized by microwave heating: A kinetic and mechanistic re-analysis and re-interpretation. J. Phys. Chem. C 2017, 121, 27643-27654.

Publication history
Copyright
Acknowledgements

Publication history

Received: 10 December 2018
Revised: 09 January 2019
Accepted: 10 January 2019
Published: 29 May 2019
Issue date: June 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Acknowledgements

Acknowledgements

The Startup Fund from Temple University supported this work.

Return